Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces

计算机科学 运动表象 脑-机接口 人工智能 机器学习 关系(数据库) 过程(计算) 接口(物质) 人机交互 脑电图 数据挖掘 心理学 气泡 最大气泡压力法 精神科 并行计算 操作系统
作者
Xiuyu Huang,Shuang Liang,Yuanpeng Zhang,Nan Zhou,Witold Pedrycz,Kup‐Sze Choi
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 530-543 被引量:8
标识
DOI:10.1109/tnsre.2022.3228216
摘要

For practical motor imagery (MI) brain-computer interface (BCI) applications, generating a reliable model for a target subject with few MI trials is important since the data collection process is labour-intensive and expensive. In this paper, we address this issue by proposing a few-shot learning method called temporal episode relation learning (TERL). TERL models MI with only limited trials from the target subject by the ability to compare MI trials through episode-based training. It can be directly applied to a new user without being re-trained, which is vital to improve user experience and realize real-world MIBCI applications. We develop a new and effective approach where, unlike the original episode learning, the temporal pattern between trials in each episode is encoded during the learning to boost the classification performance. We also perform an online evaluation simulation, in addition to the offline analysis that the previous studies only conduct, to better understand the performance of different approaches in real-world scenario. Extensive experiments are completed on four publicly available MIBCI datasets to evaluate the proposed TERL. Results show that TERL outperforms baseline and recent state-of-the-art methods, demonstrating competitive performance for subject-specific MIBCI where few trials are available from a target subject and a considerable number of trials from other source subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孔雀翎发布了新的文献求助10
1秒前
开放青旋应助Eternity采纳,获得20
1秒前
candy发布了新的文献求助10
1秒前
ccnn完成签到 ,获得积分10
1秒前
小马甲应助满意曼寒采纳,获得10
1秒前
1秒前
zz完成签到,获得积分10
1秒前
酸酸完成签到 ,获得积分20
1秒前
可爱的函函应助宸殇翊采纳,获得10
2秒前
科研通AI6应助,,采纳,获得10
2秒前
CodeCraft应助余真谛采纳,获得10
2秒前
2秒前
young完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
jetwang给jetwang的求助进行了留言
3秒前
3秒前
难过板栗发布了新的文献求助10
3秒前
斯文败类应助shuofeng采纳,获得10
4秒前
高高的夜梅完成签到,获得积分20
5秒前
Vivian_Zhang应助zzz采纳,获得10
5秒前
橘子味完成签到,获得积分10
5秒前
aniu发布了新的文献求助10
5秒前
Rainnnn完成签到,获得积分20
5秒前
5秒前
why完成签到,获得积分10
6秒前
顾北完成签到,获得积分10
6秒前
斑布发布了新的文献求助10
6秒前
科研通AI6应助新嘟采纳,获得10
6秒前
LL77完成签到 ,获得积分10
6秒前
6秒前
lijia3发布了新的文献求助10
7秒前
彭于晏应助高高的冰绿采纳,获得10
7秒前
完美世界应助Simms采纳,获得10
7秒前
英姑应助Sitroul采纳,获得10
7秒前
7秒前
健忘芷发布了新的文献求助20
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401