Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces

计算机科学 运动表象 脑-机接口 人工智能 机器学习 关系(数据库) 过程(计算) 接口(物质) 人机交互 脑电图 数据挖掘 心理学 气泡 最大气泡压力法 精神科 并行计算 操作系统
作者
Xiuyu Huang,Shuang Liang,Yuanpeng Zhang,Nan Zhou,Witold Pedrycz,Kup‐Sze Choi
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 530-543 被引量:8
标识
DOI:10.1109/tnsre.2022.3228216
摘要

For practical motor imagery (MI) brain-computer interface (BCI) applications, generating a reliable model for a target subject with few MI trials is important since the data collection process is labour-intensive and expensive. In this paper, we address this issue by proposing a few-shot learning method called temporal episode relation learning (TERL). TERL models MI with only limited trials from the target subject by the ability to compare MI trials through episode-based training. It can be directly applied to a new user without being re-trained, which is vital to improve user experience and realize real-world MIBCI applications. We develop a new and effective approach where, unlike the original episode learning, the temporal pattern between trials in each episode is encoded during the learning to boost the classification performance. We also perform an online evaluation simulation, in addition to the offline analysis that the previous studies only conduct, to better understand the performance of different approaches in real-world scenario. Extensive experiments are completed on four publicly available MIBCI datasets to evaluate the proposed TERL. Results show that TERL outperforms baseline and recent state-of-the-art methods, demonstrating competitive performance for subject-specific MIBCI where few trials are available from a target subject and a considerable number of trials from other source subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助yukiing采纳,获得10
刚刚
刚刚
图灵桑发布了新的文献求助10
刚刚
一一应助和谐的清采纳,获得10
1秒前
寒鸦应助啦啦啦采纳,获得30
1秒前
MrTStar发布了新的文献求助10
1秒前
wangxiaoyanger完成签到,获得积分10
2秒前
Ava应助xuzhijie采纳,获得10
2秒前
warithy发布了新的文献求助10
2秒前
科研通AI6应助伶俐剑心采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
3秒前
英俊的铭应助烟酒僧采纳,获得10
3秒前
2131322完成签到,获得积分10
4秒前
小马甲应助júpiter采纳,获得10
4秒前
orixero应助xixima采纳,获得10
4秒前
han完成签到,获得积分10
4秒前
5秒前
5秒前
怕黑世德完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
伶俐剑心完成签到,获得积分10
7秒前
852应助冲锋猛男林采纳,获得10
8秒前
带火星的木条儿完成签到,获得积分10
8秒前
TexasLiyue完成签到,获得积分10
8秒前
zhangnaozi发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
无花果应助12234采纳,获得10
9秒前
only完成签到,获得积分10
9秒前
wangs完成签到,获得积分10
9秒前
情怀应助月关采纳,获得10
9秒前
斧王完成签到,获得积分10
9秒前
思源应助yqliu采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577