Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces

计算机科学 运动表象 脑-机接口 人工智能 机器学习 关系(数据库) 过程(计算) 接口(物质) 人机交互 脑电图 数据挖掘 心理学 气泡 最大气泡压力法 精神科 并行计算 操作系统
作者
Xiuyu Huang,Shuang Liang,Yuanpeng Zhang,Nan Zhou,Witold Pedrycz,Kup‐Sze Choi
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 530-543 被引量:8
标识
DOI:10.1109/tnsre.2022.3228216
摘要

For practical motor imagery (MI) brain-computer interface (BCI) applications, generating a reliable model for a target subject with few MI trials is important since the data collection process is labour-intensive and expensive. In this paper, we address this issue by proposing a few-shot learning method called temporal episode relation learning (TERL). TERL models MI with only limited trials from the target subject by the ability to compare MI trials through episode-based training. It can be directly applied to a new user without being re-trained, which is vital to improve user experience and realize real-world MIBCI applications. We develop a new and effective approach where, unlike the original episode learning, the temporal pattern between trials in each episode is encoded during the learning to boost the classification performance. We also perform an online evaluation simulation, in addition to the offline analysis that the previous studies only conduct, to better understand the performance of different approaches in real-world scenario. Extensive experiments are completed on four publicly available MIBCI datasets to evaluate the proposed TERL. Results show that TERL outperforms baseline and recent state-of-the-art methods, demonstrating competitive performance for subject-specific MIBCI where few trials are available from a target subject and a considerable number of trials from other source subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助茶米采纳,获得10
3秒前
sleep举报刘小文求助涉嫌违规
7秒前
Hello应助隐形的凡阳采纳,获得10
8秒前
楠楠完成签到 ,获得积分10
8秒前
淡定星星完成签到,获得积分10
9秒前
小陈要发SCI完成签到 ,获得积分10
13秒前
LuckyM发布了新的文献求助10
14秒前
14秒前
lige完成签到 ,获得积分10
15秒前
16秒前
Ting完成签到 ,获得积分10
16秒前
保卫时光完成签到,获得积分10
17秒前
Roger发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
wjsAljl完成签到,获得积分10
20秒前
满意的含灵完成签到,获得积分10
22秒前
茶米发布了新的文献求助10
24秒前
夏天的风发布了新的文献求助10
24秒前
小二郎应助超帅的天曼采纳,获得10
25秒前
www完成签到 ,获得积分10
29秒前
32秒前
Biohacking完成签到,获得积分10
33秒前
高高发布了新的文献求助10
35秒前
耶斯发布了新的文献求助10
35秒前
科研蝗虫发布了新的文献求助10
36秒前
38秒前
困困包发布了新的文献求助10
39秒前
华仔应助eno1009采纳,获得20
39秒前
Lucas应助jgpiao采纳,获得10
40秒前
40秒前
41秒前
完美世界应助夏天的风采纳,获得10
41秒前
深情安青应助开朗的访彤采纳,获得10
41秒前
42秒前
42秒前
Celia完成签到,获得积分10
44秒前
碧蓝翅膀完成签到,获得积分20
45秒前
121发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454