Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces

计算机科学 运动表象 脑-机接口 人工智能 机器学习 关系(数据库) 过程(计算) 接口(物质) 人机交互 脑电图 数据挖掘 心理学 气泡 最大气泡压力法 精神科 并行计算 操作系统
作者
Xiuyu Huang,Shuang Liang,Yuanpeng Zhang,Nan Zhou,Witold Pedrycz,Kup‐Sze Choi
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 530-543 被引量:8
标识
DOI:10.1109/tnsre.2022.3228216
摘要

For practical motor imagery (MI) brain-computer interface (BCI) applications, generating a reliable model for a target subject with few MI trials is important since the data collection process is labour-intensive and expensive. In this paper, we address this issue by proposing a few-shot learning method called temporal episode relation learning (TERL). TERL models MI with only limited trials from the target subject by the ability to compare MI trials through episode-based training. It can be directly applied to a new user without being re-trained, which is vital to improve user experience and realize real-world MIBCI applications. We develop a new and effective approach where, unlike the original episode learning, the temporal pattern between trials in each episode is encoded during the learning to boost the classification performance. We also perform an online evaluation simulation, in addition to the offline analysis that the previous studies only conduct, to better understand the performance of different approaches in real-world scenario. Extensive experiments are completed on four publicly available MIBCI datasets to evaluate the proposed TERL. Results show that TERL outperforms baseline and recent state-of-the-art methods, demonstrating competitive performance for subject-specific MIBCI where few trials are available from a target subject and a considerable number of trials from other source subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝利亚发布了新的文献求助10
刚刚
清脆的台灯完成签到,获得积分10
1秒前
范范完成签到 ,获得积分10
1秒前
星辰大海应助starry采纳,获得10
2秒前
科研通AI5应助Xxxnnian采纳,获得30
2秒前
执着的小蘑菇完成签到,获得积分10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
顺顺发布了新的文献求助10
3秒前
上官若男应助科研通管家采纳,获得30
3秒前
汉堡包应助科研通管家采纳,获得30
3秒前
3秒前
烟花应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
maox1aoxin应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
5秒前
11完成签到,获得积分10
5秒前
5秒前
5秒前
时尚的书易给时尚的书易的求助进行了留言
5秒前
南北完成签到,获得积分10
6秒前
6秒前
6秒前
MADKAI发布了新的文献求助20
6秒前
xiaoli完成签到,获得积分10
7秒前
清浅完成签到,获得积分10
7秒前
赘婿应助深海soda采纳,获得10
7秒前
WJM完成签到,获得积分10
7秒前
小星星完成签到,获得积分10
7秒前
啵乐乐发布了新的文献求助10
7秒前
爆米花应助瘦瘦白昼采纳,获得10
7秒前
wintercyan发布了新的文献求助20
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678