Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yankai完成签到,获得积分10
刚刚
1秒前
张家旗完成签到,获得积分20
2秒前
2秒前
2秒前
玄xuan发布了新的文献求助10
2秒前
小竹爱科研完成签到,获得积分10
3秒前
3秒前
科研通AI6.1应助江123采纳,获得10
3秒前
呆萌连碧发布了新的文献求助10
3秒前
科研通AI6.1应助袁搏采纳,获得10
4秒前
4秒前
Binny423发布了新的文献求助10
4秒前
5秒前
bruce发布了新的文献求助10
5秒前
5秒前
6秒前
感冒灵发布了新的文献求助10
6秒前
lily应助DNE采纳,获得20
6秒前
Paper发布了新的文献求助10
6秒前
科研通AI6.1应助DNE采纳,获得10
6秒前
6秒前
TOU发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
太阳罗山的地方完成签到,获得积分10
7秒前
Luojiayi完成签到,获得积分10
7秒前
8秒前
ni发布了新的文献求助10
8秒前
Electrocatalysis完成签到,获得积分10
9秒前
9秒前
十一发布了新的文献求助10
9秒前
粱代芙完成签到,获得积分10
10秒前
10秒前
lily发布了新的文献求助10
10秒前
10秒前
wk发布了新的文献求助10
10秒前
9527完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760339
求助须知:如何正确求助?哪些是违规求助? 5524315
关于积分的说明 15397180
捐赠科研通 4897238
什么是DOI,文献DOI怎么找? 2634090
邀请新用户注册赠送积分活动 1582111
关于科研通互助平台的介绍 1537591