Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NexusExplorer应助yiw采纳,获得10
1秒前
2秒前
科研通AI2S应助sxy采纳,获得10
2秒前
4秒前
5秒前
莹涩双鱼完成签到,获得积分10
6秒前
tzy6665完成签到,获得积分10
6秒前
蕙蕙关注了科研通微信公众号
7秒前
7秒前
8秒前
LLLLL完成签到,获得积分20
9秒前
9秒前
nengzou完成签到 ,获得积分10
9秒前
风趣凡阳发布了新的文献求助10
9秒前
yiyi关注了科研通微信公众号
9秒前
10秒前
研友_VZG7GZ应助WWXWWX采纳,获得10
10秒前
香蕉觅云应助WWXWWX采纳,获得10
11秒前
NexusExplorer应助WWXWWX采纳,获得10
11秒前
Ava应助WWXWWX采纳,获得10
11秒前
852应助WWXWWX采纳,获得10
11秒前
莹涩双鱼发布了新的文献求助50
11秒前
迷路海蓝应助WWXWWX采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
12秒前
Wenpandaen应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得20
12秒前
打打应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
元谷雪应助科研通管家采纳,获得10
12秒前
12秒前
不配.应助科研通管家采纳,获得20
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
元谷雪应助科研通管家采纳,获得10
12秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145115
求助须知:如何正确求助?哪些是违规求助? 2796489
关于积分的说明 7819996
捐赠科研通 2452771
什么是DOI,文献DOI怎么找? 1305202
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449