Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fang应助miao采纳,获得10
1秒前
星辰与月完成签到,获得积分10
1秒前
Pt-SACs发布了新的文献求助10
1秒前
安静无招完成签到 ,获得积分10
5秒前
lqphysics完成签到,获得积分10
6秒前
Jerry完成签到 ,获得积分10
6秒前
枕星发布了新的文献求助10
6秒前
全职法师刘海柱完成签到,获得积分10
8秒前
Umar完成签到,获得积分10
8秒前
accepted完成签到,获得积分10
9秒前
10秒前
Pt-SACs完成签到,获得积分10
11秒前
wgglegg完成签到 ,获得积分10
11秒前
饱满跳跳糖完成签到,获得积分10
11秒前
zhaoxiaonuan完成签到,获得积分10
11秒前
12秒前
赘婿应助2023204306324采纳,获得10
12秒前
英勇笑萍完成签到,获得积分10
13秒前
yar完成签到 ,获得积分10
14秒前
15秒前
伦语发布了新的文献求助10
15秒前
沉静怜蕾完成签到,获得积分10
15秒前
15秒前
欢呼白晴完成签到 ,获得积分10
16秒前
凉白开发布了新的文献求助10
16秒前
金扇扇完成签到 ,获得积分10
16秒前
Odyssey_Cheung完成签到,获得积分10
17秒前
JG完成签到,获得积分10
17秒前
明亮紫易完成签到,获得积分10
18秒前
张绪帆完成签到,获得积分10
18秒前
19秒前
龙眼完成签到,获得积分10
19秒前
clientprogram完成签到,获得积分0
19秒前
wendy发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
zyc完成签到,获得积分10
21秒前
废羊羊完成签到 ,获得积分10
21秒前
暗香完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029