Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打烊完成签到,获得积分10
刚刚
shukq发布了新的文献求助10
1秒前
轨迹应助long采纳,获得50
1秒前
zz发布了新的文献求助50
2秒前
genge发布了新的文献求助10
2秒前
科研渣渣发布了新的文献求助10
3秒前
ding应助研友_LpvQlZ采纳,获得10
3秒前
3秒前
123发布了新的文献求助30
3秒前
852应助云为翳采纳,获得10
3秒前
希望天下0贩的0应助Darsine采纳,获得10
4秒前
怕黑一斩完成签到,获得积分20
4秒前
清风发布了新的文献求助10
4秒前
5秒前
安详苠发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
知虾完成签到 ,获得积分10
6秒前
6秒前
7秒前
zhuyanqi完成签到,获得积分10
7秒前
7秒前
7秒前
yiyiy9完成签到,获得积分10
8秒前
9秒前
坚定晓兰完成签到,获得积分10
9秒前
Galen完成签到,获得积分20
10秒前
10秒前
小马甲应助zhangnan采纳,获得10
11秒前
竞鹤发布了新的文献求助10
11秒前
Imstemcell发布了新的文献求助10
11秒前
12秒前
Wynne发布了新的文献求助80
12秒前
12秒前
子车茗应助5866采纳,获得20
13秒前
科研通AI6.1应助方方公主采纳,获得10
13秒前
13秒前
坚定晓兰发布了新的文献求助10
14秒前
丘比特应助宣登仕采纳,获得10
14秒前
小梦发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270