亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
冬雾完成签到 ,获得积分10
4秒前
共享精神应助shinn采纳,获得10
4秒前
撒旦asd发布了新的文献求助10
6秒前
6秒前
9202211125完成签到,获得积分10
7秒前
LeeHx完成签到 ,获得积分10
8秒前
ddd完成签到 ,获得积分10
8秒前
SiboN完成签到,获得积分10
9秒前
11秒前
布丁儿完成签到 ,获得积分10
12秒前
人美心善大野驴完成签到 ,获得积分10
14秒前
16秒前
17秒前
17秒前
18秒前
21秒前
kenti2023完成签到 ,获得积分10
22秒前
shinn发布了新的文献求助10
23秒前
浩whu完成签到,获得积分10
23秒前
北宸发布了新的文献求助10
24秒前
所所应助宇宙超人007008采纳,获得10
24秒前
Chen完成签到,获得积分10
26秒前
无花果应助斯文从筠采纳,获得10
28秒前
哈哈哈完成签到,获得积分10
28秒前
桐桐应助shinn采纳,获得10
29秒前
31秒前
微笑的依凝完成签到,获得积分10
32秒前
ferritin完成签到 ,获得积分10
32秒前
沢雨完成签到 ,获得积分10
32秒前
34秒前
生椰拿铁完成签到 ,获得积分10
36秒前
叶子完成签到 ,获得积分10
36秒前
37秒前
czy发布了新的文献求助30
37秒前
ly发布了新的文献求助10
38秒前
科研通AI6.1应助nasa采纳,获得10
39秒前
ecnu搬砖人完成签到,获得积分10
43秒前
44秒前
乐乐应助ly采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772246
求助须知:如何正确求助?哪些是违规求助? 5596912
关于积分的说明 15429307
捐赠科研通 4905268
什么是DOI,文献DOI怎么找? 2639301
邀请新用户注册赠送积分活动 1587230
关于科研通互助平台的介绍 1542080