Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柚子发布了新的文献求助10
1秒前
2秒前
1212发布了新的文献求助10
2秒前
3秒前
小王完成签到,获得积分10
4秒前
ldy关闭了ldy文献求助
6秒前
研友_VZG7GZ应助专一的水之采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
yutian发布了新的文献求助10
8秒前
Lucas应助新伟张采纳,获得10
8秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
13秒前
诚心萧发布了新的文献求助10
14秒前
潇潇雨歇完成签到,获得积分10
14秒前
adazbq发布了新的文献求助10
14秒前
15秒前
KirstinSmoler应助潇潇雨歇采纳,获得10
17秒前
18秒前
18秒前
21秒前
JZ完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
无底洞发布了新的文献求助10
21秒前
辻诺完成签到,获得积分10
21秒前
CipherSage应助面团采纳,获得10
22秒前
qaz完成签到,获得积分10
22秒前
peanut完成签到,获得积分10
23秒前
可爱的函函应助失眠台灯采纳,获得10
24秒前
24秒前
SATone完成签到,获得积分10
25秒前
玻璃杯发布了新的文献求助10
25秒前
谦让南烟发布了新的文献求助10
26秒前
章鱼哥发布了新的文献求助10
26秒前
aslink完成签到,获得积分10
28秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896