清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
38秒前
博姐37完成签到 ,获得积分10
40秒前
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
weiwei完成签到,获得积分10
1分钟前
爱思考的小笨笨完成签到,获得积分10
1分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
如歌完成签到,获得积分10
2分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
Criminology34应助Lulu采纳,获得10
2分钟前
2分钟前
多乐多发布了新的文献求助10
2分钟前
情怀应助多乐多采纳,获得10
3分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
crazy完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
h0jian09完成签到,获得积分10
4分钟前
lovelife完成签到,获得积分10
5分钟前
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
魔幻的从丹完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
Jessica应助hu采纳,获得10
6分钟前
7分钟前
7分钟前
雨jia完成签到,获得积分10
7分钟前
大个应助鹏哥爱科研采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545