Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcarus完成签到 ,获得积分10
3秒前
风里等你完成签到,获得积分10
5秒前
赧赧完成签到 ,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
lcarus关注了科研通微信公众号
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Adc应助科研通管家采纳,获得10
7秒前
stiger应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
看文献完成签到,获得积分10
8秒前
8秒前
呆萌芙蓉完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
淮安石河子完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
娷静完成签到 ,获得积分10
16秒前
TGU的小马同学完成签到 ,获得积分10
16秒前
16秒前
老和山完成签到,获得积分10
18秒前
kusicfack完成签到,获得积分10
19秒前
20秒前
银河里完成签到 ,获得积分10
21秒前
空间完成签到 ,获得积分10
21秒前
安安完成签到,获得积分10
22秒前
NexusExplorer应助一个小胖子采纳,获得10
23秒前
笑点低的铁身完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
王丹靖完成签到 ,获得积分10
27秒前
Dsunflower完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
35秒前
apt完成签到 ,获得积分10
37秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527