重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Unsupervised Semantic Segmenting TLS Data of Individual Tree Based on Smoothness Constraint Using Open-Source Datasets

点云 分割 计算机科学 树(集合论) 图像分割 人工智能 模式识别(心理学) 遥感 数学 地质学 数学分析
作者
Yanqi Dong,Zhibin Ma,Fang Xu,Feixiang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2022.3218442
摘要

Unsupervised segmentation of Terrestrial Laser Scanning (TLS) data into wood and leaf is the key for studying forest carbon storage, photosynthesis, canopy radiation. Further segmentation of wood data into trunk and larger branch (TLB), remaining branch (RB) is of great significance and challenge for dust retention, soil heavy metal enrichment. We proposed an unsupervised, automatic semantic segmentation method based on TLS data of individual tree. The method firstly performs initial segmentation based on plane fitting residuals and neighborhood normal angle, which can extract smooth and connected regions in point cloud. Then, the geometric features of segmented clusters are quantified to approximate RB or leaf features. Finally, the segmentation of TLB, RB, and leaf is realized by combining different clusters from bottom to top with geometric features and neighborhood relations. The segmentation performance of our method was evaluated with 104 tree samples from 23 tree species in two open-source datasets from Indonesia, Peru, Guyana and from Canada and Finland. The micro-average precision of our method is 93.61%. The micro-average recalls of TLB, RB, and leaf are 97.08%, 86.44%, and 89.62%. Compared with the well-known method of separating wood and leaf, our method has 33.56% higher sensitivity, 1.82% higher specificity, 20.52% higher precision, and 0.217 higher F1-score. Besides, we estimated the surface area and volume of TLB, the surface area and volume of RB based on the segmented data. The above parameters have good consistency compared to those calculated based on manually separated point clouds (Pearson correlation coefficient (PCC) of 0.55-0.93).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哇呀呀完成签到 ,获得积分0
1秒前
科研通AI6应助疯帽子采纳,获得10
1秒前
1秒前
zheng发布了新的文献求助10
2秒前
2秒前
可爱的函函应助thomas采纳,获得10
3秒前
1234567完成签到,获得积分10
3秒前
啦啦啦发布了新的文献求助10
5秒前
Redecwc刚刚好吧完成签到,获得积分10
5秒前
砷硒溴完成签到,获得积分10
5秒前
5秒前
完美世界应助GUKGO采纳,获得10
5秒前
scott_zip发布了新的文献求助10
6秒前
7秒前
眯眯眼的代容完成签到,获得积分10
8秒前
8秒前
insane完成签到,获得积分10
9秒前
9秒前
星星完成签到,获得积分10
9秒前
夕阳space完成签到,获得积分10
9秒前
10秒前
cheng发布了新的文献求助10
11秒前
insane发布了新的文献求助20
11秒前
一口啵啵发布了新的文献求助10
11秒前
11秒前
梵莫发布了新的文献求助10
12秒前
layuexue完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
7890733发布了新的文献求助10
13秒前
yznfly应助红衣落花倾城采纳,获得40
13秒前
科研通AI6应助小杨采纳,获得10
13秒前
姜且发布了新的文献求助10
14秒前
zzsossos完成签到,获得积分10
14秒前
14秒前
bkagyin应助Chen采纳,获得10
15秒前
砷硒溴发布了新的文献求助10
16秒前
英俊的铭应助能干的玉兰采纳,获得10
16秒前
16秒前
zzsossos发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467780
求助须知:如何正确求助?哪些是违规求助? 4571365
关于积分的说明 14329852
捐赠科研通 4497935
什么是DOI,文献DOI怎么找? 2464155
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699