信息物理系统
稳健性(进化)
工程类
控制理论(社会学)
网络数据包
计算机科学
计算机网络
人工智能
控制(管理)
生物化学
基因
操作系统
化学
作者
Wanke Cao,Mengchao Yang,Zhongbao Wei,Jun Wang,Xiaoguang Yang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2023-04-01
卷期号:72 (4): 4426-4441
被引量:1
标识
DOI:10.1109/tvt.2022.3222870
摘要
Modern autonomous emergency braking (AEB) system is a typical safety-critical cyber-physical system (CPS) synthesizing the vehicular communications, control, and proception technologies. However, the control performance of braking can be easily deteriorated by the road adhesion saturation in physical environment and the multi-hop communication network-induced delays in cyber systems. Motivated by this, a new multi-hop loop delay analysis method and its associated upper-bound expression is proposed to scrutinize the system uncertainties, within the scope of CPS. Following this endeavor, a hierarchical cyber-physical control scheme for the AEB system is proposed to mitigate the adverse effects of road adhesion saturation and multi-hop communication network-induced delays. At the upper layer, a μ-adaptive time-to-collision (TTC) planning strategy is adopted to generate the desired acceleration for collision risk avoidance considering the road adhesion saturation. At the lower layer, an ${H}_\infty $ -based linear quadratic regulator (LQR) is designed for acceleration tracking with strong robustness to the uncertainties of cyber system. Hardware-In-Loop (HIL) experiments validate that the proposed method is superior in terms of braking accuracy and the robustness to the system uncertainties.
科研通智能强力驱动
Strongly Powered by AbleSci AI