Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?

随机森林 支持向量机 平均绝对百分比误差 体积热力学 盐湖 地理空间分析 水文学(农业) 线性回归 人工神经网络 环境科学 统计 计算机科学 地质学 数学 人工智能 遥感 地貌学 构造盆地 物理 岩土工程 量子力学
作者
Pengfei Zhan,Chunqiao Song,Kai Liu,Tan Chen,Linghong Ke,Shuangxiao Luo,Chenyu Fan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:617: 128958-128958 被引量:7
标识
DOI:10.1016/j.jhydrol.2022.128958
摘要

The accurate quantification of lake volume is essential for regional water resources management and ecosystem health. Because of the high cost of traditional full-lake depth measurements, the bathymetric and volume information for most lakes globally is inaccessible. Whether the limited field measurements over the lake can be used to estimate lake volume is worth investigating. This study aims to propose an effective method for estimating lake mean depth/volume based on the lake deepest record. We first constructed the empirical model that relies on the linear relationship between lake maximum depth and lake mean depth/volume. The different machine learning (ML) methods were then developed and tested based on the available lake deepest record and multi-type geospatial parameters. Although the linear model shows good performance for estimating lake mean depth (R2 = 0.83), it is difficult to predict lake volume (R2 = 0.23). Most ML models perform better (R2 ≥ 0.85) than linear models. However, the support vector machines (SVM) model (SVM-3: R2 = 0.54, MAPE = 134.93 %) and deep neural network (DNN) model (DNN-3: R2 = 0.83, MAPE = 82.56 %) constructed with low influential input parameters performed poorly. In contrast, extremely gradient boosting tree (XGBoost) and random forest (RF) methods have high stability and accuracy both in predicting lake mean depth (XGBoost-1: R2 = 0.87, MAPE = 23.35 %; RF-1: R2 = 0.90, MAPE = 22.75 %) and volume (XGBoost-3: R2 = 0.99, MAPE = 31.03 %; RF-3: R2 = 0.98, MAPE = 32.63 %). The RF and XGBoost models constructed with a small amount of measured lake depth data in a different region also had a good performance. Generally, the results suggest that the XGBoost and RF methods have great potential in lake volume estimation. This research is expected to provide a feasible approach to predict lake volume and benefit lake water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xg发布了新的文献求助10
1秒前
看看发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
Annie完成签到,获得积分10
3秒前
3秒前
通~发布了新的文献求助30
4秒前
4秒前
雨雾发布了新的文献求助10
5秒前
daiyapeng完成签到,获得积分10
5秒前
ivy应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
36456657应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
Hello应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
36456657应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
7秒前
顾闭月发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794