Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?

随机森林 支持向量机 平均绝对百分比误差 体积热力学 盐湖 地理空间分析 水文学(农业) 线性回归 人工神经网络 环境科学 统计 计算机科学 地质学 数学 人工智能 遥感 地貌学 构造盆地 物理 岩土工程 量子力学
作者
Pengfei Zhan,Chunqiao Song,Kai Liu,Tan Chen,Linghong Ke,Shuangxiao Luo,Chenyu Fan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:617: 128958-128958 被引量:7
标识
DOI:10.1016/j.jhydrol.2022.128958
摘要

The accurate quantification of lake volume is essential for regional water resources management and ecosystem health. Because of the high cost of traditional full-lake depth measurements, the bathymetric and volume information for most lakes globally is inaccessible. Whether the limited field measurements over the lake can be used to estimate lake volume is worth investigating. This study aims to propose an effective method for estimating lake mean depth/volume based on the lake deepest record. We first constructed the empirical model that relies on the linear relationship between lake maximum depth and lake mean depth/volume. The different machine learning (ML) methods were then developed and tested based on the available lake deepest record and multi-type geospatial parameters. Although the linear model shows good performance for estimating lake mean depth (R2 = 0.83), it is difficult to predict lake volume (R2 = 0.23). Most ML models perform better (R2 ≥ 0.85) than linear models. However, the support vector machines (SVM) model (SVM-3: R2 = 0.54, MAPE = 134.93 %) and deep neural network (DNN) model (DNN-3: R2 = 0.83, MAPE = 82.56 %) constructed with low influential input parameters performed poorly. In contrast, extremely gradient boosting tree (XGBoost) and random forest (RF) methods have high stability and accuracy both in predicting lake mean depth (XGBoost-1: R2 = 0.87, MAPE = 23.35 %; RF-1: R2 = 0.90, MAPE = 22.75 %) and volume (XGBoost-3: R2 = 0.99, MAPE = 31.03 %; RF-3: R2 = 0.98, MAPE = 32.63 %). The RF and XGBoost models constructed with a small amount of measured lake depth data in a different region also had a good performance. Generally, the results suggest that the XGBoost and RF methods have great potential in lake volume estimation. This research is expected to provide a feasible approach to predict lake volume and benefit lake water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈住气完成签到,获得积分10
1秒前
言字午发布了新的文献求助10
1秒前
2秒前
Ava应助FERN0826采纳,获得10
2秒前
科研通AI2S应助我心飞扬采纳,获得10
3秒前
秋枫忆完成签到,获得积分10
3秒前
qqqqqqqqq完成签到 ,获得积分10
3秒前
苍耳完成签到,获得积分10
3秒前
Lucy完成签到,获得积分10
4秒前
hhh完成签到,获得积分10
4秒前
夏天完成签到,获得积分10
4秒前
长情的书雁完成签到,获得积分20
5秒前
丰富的高山完成签到,获得积分10
5秒前
碧蓝代丝发布了新的文献求助10
6秒前
林深完成签到,获得积分10
6秒前
6秒前
sak完成签到,获得积分10
7秒前
阿浮完成签到 ,获得积分10
7秒前
7秒前
hw完成签到 ,获得积分10
8秒前
LI完成签到 ,获得积分10
9秒前
9秒前
9秒前
wenbin发布了新的文献求助10
10秒前
licheng完成签到,获得积分10
11秒前
11秒前
朴素寄文完成签到 ,获得积分10
11秒前
11秒前
木木完成签到 ,获得积分10
11秒前
林深时见鹿完成签到,获得积分10
12秒前
wg发布了新的文献求助10
12秒前
12秒前
Muttu完成签到 ,获得积分10
13秒前
222发布了新的文献求助10
13秒前
13秒前
leserein应助Pandaer采纳,获得30
13秒前
乐乐应助天真的嚓茶采纳,获得10
14秒前
星空物语完成签到,获得积分10
14秒前
张小龙完成签到 ,获得积分10
14秒前
鄢廷芮完成签到 ,获得积分10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Elastic local buckling behaviour of corroded cold-formed steel columns 500
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180222
求助须知:如何正确求助?哪些是违规求助? 2830617
关于积分的说明 7979310
捐赠科研通 2492194
什么是DOI,文献DOI怎么找? 1329251
科研通“疑难数据库(出版商)”最低求助积分说明 635720
版权声明 602954