Recycling the High-Salinity Textile Wastewater by Quercetin-Based Nanofiltration Membranes with Minimal Water and Energy Consumption

纳滤 废水 渗透 化学 分馏 化学工程 制浆造纸工业 膜技术 色谱法 环境工程 环境科学 渗透 生物化学 工程类
作者
Rui Zhao,Yi Li,Yafei Mao,Guichuan Li,Tim Croes,Junyong Zhu,Xinda You,A. Volodin,Junfeng Zheng,Bart Van der Bruggen
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (24): 17998-18007 被引量:36
标识
DOI:10.1021/acs.est.2c06397
摘要

Effective recovery of dyes and salts from textile wastewater by nanofiltration (NF) remains a serious challenge due to the high consumption of water and energy caused by the limited performance of the available membranes. Herein, a novel strategy is described to prepare loose polyester NF membranes by using renewable quercetin as the aqueous monomer for fractionation of high salinity textile wastewater with minimal water and energy consumption. Compared with NF270, taken as the reference membrane, the QE-0.2/TMC-0.2 membrane significantly improved the efficiency for dye/salt fractionation by 288%. The water consumption was also decreased by 42.9%. The efficiency is attributed to an ultrahigh water permeance of 198 ± 2.1 L–1 m–2 h–1 bar–1 with a high selectivity of 123 (extremely low NaCl rejection of 1.6% and high Congo red rejection of 99.2%). The optimal quercetin-based membrane had an ultrathin separation layer of about 39 ± 1.2 nm with good hydrophilicity and negative charge density. Moreover, this work includes a novel method of comparison with a theoretically ideal membrane, which shows that both the energy and water consumption are near their theoretical minimum. This strategy is expected to save energy and minimize carbon emissions for membrane-based wastewater treatment systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大晨完成签到,获得积分10
刚刚
哈哈哈haha发布了新的文献求助20
1秒前
cc发布了新的文献求助10
1秒前
Yolo发布了新的文献求助10
1秒前
1秒前
allenice完成签到,获得积分10
1秒前
2秒前
2秒前
音乐发布了新的文献求助10
2秒前
英姑应助科研通管家采纳,获得10
3秒前
华仔应助沙拉采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
Orange应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助夏夏采纳,获得10
4秒前
英俊的铭应助夏夏采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
万能图书馆应助夏夏采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科研通AI5应助夏夏采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
赘婿应助夏夏采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
cc应助夏夏采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
yun尘世应助科研通管家采纳,获得10
5秒前
仿生人完成签到,获得积分10
5秒前
CodeCraft应助yxy采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762