Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading

强化学习 排放交易 点对点 可再生能源 灵活性(工程) 高效能源利用 计算机科学 环境经济学 工程类 分布式计算 经济 温室气体 人工智能 电气工程 管理 生物 生态学
作者
Dawei Qiu,Juxing Xue,Tingqi Zhang,Jianhong Wang,Mingyang Sun
出处
期刊:Applied Energy [Elsevier]
卷期号:333: 120526-120526 被引量:39
标识
DOI:10.1016/j.apenergy.2022.120526
摘要

The multi-energy system (MES), which is regarded as an optimum solution to a high-efficiency, green energy system and a crucial shift towards the future low-carbon energy system, has attracted great attention at the district building level. However, the current exploration of flexible MES operation has been hampered by (1) the increasing penetration of renewable energies and the complicated operation of coupling multi-energy sectors; (2) the privacy concern in the decentralization of the energy system; and (3) the lack of integration of the energy market and carbon emission trading scheme. To address the aforementioned challenges, this paper proposes a joint peer-to-peer energy and carbon allowance trading mechanism for a building community, and then models it as a multi-agent reinforcement learning (MARL) paradigm. In this setting, the flexibility of building local trading and the decarbonization of building energy management can both be fully utilized. To stabilize the training performance, an abstract critic network capturing system dynamics is introduced based on a deep deterministic policy gradient method. The technique of federated learning (FL) is also applied to speed up the training and safeguard the private information of each building in the community. Empirical results on a real-world test case evaluate its superior performance in terms of achieving both economic and environmental benefits, resulting in 5.87% and 8.02% lower total energy and environment costs than the two baseline mechanisms of peer-to-grid energy trading and peer-to-peer energy trading, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助WJ采纳,获得10
1秒前
赘婿应助陈早睡采纳,获得10
2秒前
3秒前
打打应助龚成明采纳,获得10
3秒前
wjn发布了新的文献求助10
6秒前
8秒前
刻刻完成签到,获得积分10
8秒前
9秒前
mz完成签到,获得积分10
10秒前
en发布了新的文献求助10
10秒前
10秒前
11秒前
打打应助火星上的听云采纳,获得10
11秒前
活泼元瑶完成签到,获得积分10
11秒前
12秒前
15秒前
mzb给mzb的求助进行了留言
16秒前
sdahjjyk完成签到,获得积分10
18秒前
18秒前
XUHYBOR应助WQY采纳,获得10
18秒前
寂寞致幻完成签到,获得积分10
19秒前
freedom完成签到,获得积分10
20秒前
飞快的珩完成签到,获得积分10
21秒前
sdahjjyk发布了新的文献求助10
21秒前
22秒前
远山笑你完成签到 ,获得积分10
22秒前
平淡雪枫完成签到 ,获得积分10
22秒前
23秒前
23秒前
小编一枚完成签到 ,获得积分10
26秒前
27秒前
carlitos发布了新的文献求助10
28秒前
yefeng完成签到,获得积分10
28秒前
28秒前
29秒前
BJ_whc完成签到,获得积分10
30秒前
纯情的远山完成签到,获得积分10
31秒前
HR112应助不摆烂的钦采纳,获得10
31秒前
31秒前
吃面条放辣椒完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159794
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889157
捐赠科研通 2469817
什么是DOI,文献DOI怎么找? 1315087
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012