Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading

强化学习 排放交易 点对点 可再生能源 灵活性(工程) 高效能源利用 计算机科学 环境经济学 工程类 分布式计算 经济 温室气体 人工智能 电气工程 管理 生物 生态学
作者
Dawei Qiu,Juxing Xue,Tingqi Zhang,Jianhong Wang,Mingyang Sun
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120526-120526 被引量:39
标识
DOI:10.1016/j.apenergy.2022.120526
摘要

The multi-energy system (MES), which is regarded as an optimum solution to a high-efficiency, green energy system and a crucial shift towards the future low-carbon energy system, has attracted great attention at the district building level. However, the current exploration of flexible MES operation has been hampered by (1) the increasing penetration of renewable energies and the complicated operation of coupling multi-energy sectors; (2) the privacy concern in the decentralization of the energy system; and (3) the lack of integration of the energy market and carbon emission trading scheme. To address the aforementioned challenges, this paper proposes a joint peer-to-peer energy and carbon allowance trading mechanism for a building community, and then models it as a multi-agent reinforcement learning (MARL) paradigm. In this setting, the flexibility of building local trading and the decarbonization of building energy management can both be fully utilized. To stabilize the training performance, an abstract critic network capturing system dynamics is introduced based on a deep deterministic policy gradient method. The technique of federated learning (FL) is also applied to speed up the training and safeguard the private information of each building in the community. Empirical results on a real-world test case evaluate its superior performance in terms of achieving both economic and environmental benefits, resulting in 5.87% and 8.02% lower total energy and environment costs than the two baseline mechanisms of peer-to-grid energy trading and peer-to-peer energy trading, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qi发布了新的文献求助10
刚刚
刚刚
Tiffany完成签到,获得积分10
刚刚
1秒前
2秒前
jia发布了新的文献求助10
4秒前
4秒前
5秒前
蠢宝贝完成签到,获得积分10
5秒前
5秒前
5秒前
健壮不斜完成签到 ,获得积分10
5秒前
6秒前
Neo完成签到,获得积分10
6秒前
8秒前
大美女发布了新的文献求助10
8秒前
胡凤凰完成签到,获得积分10
9秒前
9秒前
谜呀发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
隐形曼青应助LIUS采纳,获得10
11秒前
wanci应助朱慧龙采纳,获得10
11秒前
ANDRT发布了新的文献求助10
11秒前
12秒前
13秒前
lyw发布了新的文献求助10
13秒前
13秒前
任性采梦发布了新的文献求助30
14秒前
yanyanyan发布了新的文献求助10
15秒前
15秒前
Starain完成签到,获得积分10
15秒前
16秒前
羊羊羊发布了新的文献求助10
16秒前
二宝发布了新的文献求助10
16秒前
ED应助天衍四九采纳,获得10
16秒前
111222发布了新的文献求助10
17秒前
李爱国应助iMoney采纳,获得10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306