Wi-Fi RTT/Encoder/INS-Based Robot Indoor Localization Using Smartphones

惯性测量装置 编码器 非视线传播 卡尔曼滤波器 惯性导航系统 计算机科学 测距 机器人 实时计算 保险丝(电气) 人工智能 移动机器人 扩展卡尔曼滤波器 计算机视觉 工程类 惯性参考系 无线 电信 物理 电气工程 操作系统 量子力学
作者
Baoding Zhou,Zhiqian Wu,Zhipeng Chen,Xu Liu,Qingquan Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (5): 6683-6694 被引量:2
标识
DOI:10.1109/tvt.2023.3234283
摘要

With the rapid development of robotics, miniaturized and inexpensive robots have gradually entered the public's field of vision. Smartphone-based robots have the potential to provide high-precision indoor localization, and they are easy to promote and apply. In this paper, we propose a tight integrated positioning system based on Wi-Fi round trip time (RTT), encoders, and the inertial measurement unit (IMU) for robot indoor localization using smartphones. In our approach, we first design an error-state Kalman Filter (ESKF) to fuse the inertial information from the IMU with the measurements from the encoders to suppress the errors accumulated by the inertial navigation system (INS). Second, the Wi-Fi RTT-based localization method is implemented through an adaptive extended Kalman filter (AEKF) to fuse the ranging information. Finally, to overcome the shortcomings of the long-time drift of the INS and the instability of the Wi-Fi RTT-based localization system, we implement a tight integrated positioning system, which obtains the optimal estimation of the INS positioning error by using the Wi-Fi RTT ranging values as filtering constraints and smooths the INS positioning error through the Rauch-Tung-Striebel (RTS) algorithm. Experimental results show that compared with the Wi-Fi RTT-based method under line of sight condition (LOS) and non-line of sight condition (NLOS), the mean positioning error of the proposed method is improved by 54.62% and 58.38%, respectively, while compared with the INS/Encoder method, those is improved by 57.48% and 33.04%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chu_JH完成签到,获得积分10
刚刚
刚刚
博弈春秋应助修辛采纳,获得10
2秒前
l739744402发布了新的文献求助10
2秒前
2秒前
物是人非发布了新的文献求助10
3秒前
善学以致用应助dogpij采纳,获得10
4秒前
隐形曼青应助tesla采纳,获得10
5秒前
Ayn完成签到,获得积分20
5秒前
夏至未至发布了新的文献求助10
6秒前
风萧零落完成签到,获得积分10
8秒前
8秒前
rhrhn完成签到,获得积分10
9秒前
wwqdd发布了新的文献求助10
9秒前
Re完成签到,获得积分10
10秒前
秀丽的香旋完成签到,获得积分10
10秒前
10秒前
愉快的真完成签到,获得积分0
11秒前
11秒前
简单完成签到,获得积分10
11秒前
炫炫炫发布了新的文献求助10
12秒前
12秒前
共享精神应助tesla采纳,获得10
13秒前
13秒前
13秒前
15秒前
16秒前
16秒前
16秒前
kx完成签到,获得积分10
17秒前
言十发布了新的文献求助10
17秒前
17秒前
AXEDW完成签到,获得积分10
17秒前
17秒前
18秒前
Miss_Q完成签到 ,获得积分10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557744
求助须知:如何正确求助?哪些是违规求助? 3132808
关于积分的说明 9399558
捐赠科研通 2832945
什么是DOI,文献DOI怎么找? 1557160
邀请新用户注册赠送积分活动 727114
科研通“疑难数据库(出版商)”最低求助积分说明 716191