亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Flexible Object-Level Processing Strategy to Enhance the Weight Function-Based Spatiotemporal Fusion Method

融合 均方误差 像素 传感器融合 功能(生物学) 对象(语法) 计算机科学 模式识别(心理学) 数学 算法 人工智能 统计 语言学 进化生物学 生物 哲学
作者
Dizhou Guo,Wenzhong Shi,Zhang Hua,Ming Hao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:13
标识
DOI:10.1109/tgrs.2022.3212474
摘要

Spatiotemporal fusion technique provides a cost-efficient way to achieve dense time series observation. Among all categories of spatiotemporal fusion methods, the weight function-based method attracted considerable attention. However, this kind of method selects similar pixels in a regular window without considering the distribution of features, which will weaken its ability to preserve the structure information. Besides, the weight function-based method carries out pixel-by-pixel fusion computation, which leads to computational inefficiency. To solve the aforementioned issues, a flexible object-level (OL) processing strategy is proposed in this article. Three popular spatiotemporal fusion methods include the spatial and temporal adaptive reflectance fusion model (STARFM), the enhance STARFM (ESTARFM) and the three-step method (Fit-FC) were selected as examples to analyze and validate the effectiveness of the OL processing strategy. Four study sites with different surface landscapes and change patterns were adopted for experiments. Experimental results indicated that the OL fusion versions of STARFM, ESTARFM, and Fit-FC can better preserve the structural information, and were 102.89–113.71, 92.77–115.73, and 30.51–36.15 times faster than their original methods. Remarkably, the OL fusion versions of Fit-FC outperform all competing methods in one-pair case fusion experiments, especially in Poyang lake wetland (PY) area (root mean square error (RMSE) is 0.0343 versus 0.0380, correlation coefficient ( $r$ ) is 0.7469 versus 0.6986 compare with Fit-FC). Additionally, the OL processing strategy can also be adopted to enhance other methods which use the principle of combining similar adjacent information. The program and test data are available at https://github.com/Andy-cumt .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
wll发布了新的文献求助10
26秒前
EthanLu完成签到,获得积分10
34秒前
在水一方应助科研通管家采纳,获得10
37秒前
兴奋元冬完成签到,获得积分10
40秒前
42秒前
HOVER发布了新的文献求助10
45秒前
47秒前
50秒前
EthanLu发布了新的文献求助10
51秒前
ly发布了新的文献求助10
54秒前
56秒前
兴奋元冬发布了新的文献求助10
1分钟前
1分钟前
VuuVuu完成签到,获得积分20
1分钟前
1分钟前
格林完成签到,获得积分10
1分钟前
格林发布了新的文献求助10
1分钟前
1分钟前
EthanLu发布了新的文献求助10
1分钟前
小蘑菇应助离江采纳,获得10
1分钟前
赘婿应助123采纳,获得10
1分钟前
Emon完成签到,获得积分10
2分钟前
2分钟前
2分钟前
10 g发布了新的文献求助30
2分钟前
Emon应助科研通管家采纳,获得10
2分钟前
Emon应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
Xiaoxiao应助科研通管家采纳,获得10
2分钟前
Emon应助科研通管家采纳,获得10
2分钟前
2分钟前
零四零零柒贰完成签到 ,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
3分钟前
Orange应助123采纳,获得10
3分钟前
3分钟前
cyf发布了新的文献求助10
3分钟前
zcl发布了新的文献求助10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390856
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715803