A Bi-branch Dark Channel Differential Convolutional Neural Network for Occupational Pneumoconiosis Staging

尘肺病 卷积神经网络 计算机科学 深度学习 人工智能 特征(语言学) 特征提取 频道(广播) 模式识别(心理学) 放射科 医学 病理 电信 语言学 哲学
作者
Qianhao Luo,Xin Liu,Huaqiang Yuan,Xiaojian Wang,Yongyi Wang,Wei He,Weiling Li
标识
DOI:10.1109/ijcnn55064.2022.9892157
摘要

Occupational pneumoconiosis (OP) staging is a vital task concerning the lung healthy of a subject. To perform artificial intelligence (AI)-assisted OP staging via chest X-ray image representational learning and classification commonly adopted to address it, where a Convolutional Neural Network (CNN) has proven to be efficient. However, unlike commonly encountered image classification tasks, OP staging relies heavily on the profusion level of opacities. The opacities in chest X-ray overlap with other tissues in the lung area and are hard to be represented by a standard CNN, thereby leading to inaccurate staging results. Aiming at implementing accurate determination of the opacities caused by pneumoconiosis, this study incorporates a dark channel prior method into a bi-branch learning structure, thereby establishing a Bi-branch Dark Channel Differential Convolutional Neural Network (BDCNN) for accurate AI-assisted OP staging. Its ideas are two-fold: a) extracting opacities caused by pneumoconiosis from chest X-ray with a dark channel prior-based dehazing method, and b) realizing multiple feature fusion via a bi-branch structure to ensure high staging accuracy. Experimental results on six real OP data cases demonstrate that the proposed BDCNN outperforms state-of-the-art models in obtaining accurate staging results for occupational pneumoconiosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
852应助孝艺采纳,获得10
1秒前
Hellowa发布了新的文献求助10
1秒前
SciGPT应助汤泽琪采纳,获得10
2秒前
3秒前
tao_blue发布了新的文献求助10
3秒前
Sckke完成签到,获得积分10
4秒前
小李是个小可爱完成签到 ,获得积分10
4秒前
乐乐应助Superman采纳,获得10
5秒前
5秒前
李健应助金刚呆门采纳,获得10
7秒前
科目三应助Sckke采纳,获得10
8秒前
9秒前
某宁完成签到,获得积分10
9秒前
君君发布了新的文献求助10
10秒前
10秒前
Akim应助樂酉采纳,获得10
10秒前
Tunny完成签到,获得积分10
11秒前
追逐者发布了新的文献求助30
11秒前
隐形曼青应助呆萌的清炎采纳,获得10
12秒前
科研通AI5应助彭于晏采纳,获得30
13秒前
14秒前
14秒前
234124发布了新的文献求助10
14秒前
萱萱发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
小羊完成签到,获得积分10
16秒前
老王完成签到,获得积分10
17秒前
17秒前
yy发布了新的文献求助10
18秒前
小栗子最爱吃糖完成签到,获得积分10
18秒前
菇菇完成签到,获得积分10
18秒前
19秒前
19秒前
我是老大应助嘻嘻采纳,获得10
19秒前
19秒前
pierchong完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693361
求助须知:如何正确求助?哪些是违规求助? 3244057
关于积分的说明 9845755
捐赠科研通 2956054
什么是DOI,文献DOI怎么找? 1620742
邀请新用户注册赠送积分活动 766727
科研通“疑难数据库(出版商)”最低求助积分说明 740517