An Efficient Blockchain Assisted Reputation Aware Decentralized Federated Learning Framework

计算机科学 瓶颈 声誉 激励 符号 差别隐私 相关性(法律) 计算机安全 数据挖掘 社会科学 数学 算术 社会学 嵌入式系统 经济 微观经济学 法学 政治学
作者
Harsh Kasyap,Arpan Manna,Somanath Tripathy
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2771-2782 被引量:13
标识
DOI:10.1109/tnsm.2022.3231283
摘要

Because of the widespread presence and ease of access to the Internet, edge devices are the perfect candidates for providing quality training on a variety of applications. However, their participation is restrained due to potential leakage of sensitive and private data. Federated learning targets to address these issues by bringing the model to the device and keeping the data in place. Still, it suffers from inherent security issues such as malicious participation and unfair contribution. The central server may become a bottleneck as well as induce biased aggregation and incentives. This article proposes a blockchain assisted federated learning framework, which fosters honest participation with reduced overheads, facilitating fair contribution-based weighted incentivization. A new consensus mechanism named PoIS (Proof of Interpretation and Selection) is proposed based on honest clients' contributions. PoIS uses model interpretation techniques for evaluating and calculating individual contributions. The aggregation of feature attributions in PoIS, is able to detect the adversaries, and the label-wise aggregation of attributions across the participants helps to define the prominent contributors. Further, we devise a credit function based on the contribution, relevance as well as the past performance for calculating incentives. Extensive experiments have been carried out for the proposed architecture with different settings, models, and datasets, to verify our claim. It successfully restricts the attack to less than 5%, and selects the prominent (top- ${k}$ ) contributors. Theoretical analysis provides the guarantee for byzantine-robust aggregation, in a malicious setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的觅波完成签到 ,获得积分10
5秒前
CoCoco完成签到 ,获得积分10
13秒前
小怪兽完成签到,获得积分10
14秒前
遇见馅儿饼完成签到 ,获得积分10
15秒前
Ayn完成签到 ,获得积分10
17秒前
无私静白完成签到,获得积分10
21秒前
22秒前
tlh完成签到 ,获得积分10
22秒前
老姚完成签到,获得积分10
28秒前
轩辕中蓝完成签到 ,获得积分10
28秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
15832369693应助科研通管家采纳,获得10
32秒前
eternal_dreams完成签到 ,获得积分10
38秒前
123完成签到,获得积分10
43秒前
雪落你看不见完成签到,获得积分10
44秒前
眯眯眼的黎昕完成签到 ,获得积分10
45秒前
科研通AI2S应助无私静白采纳,获得10
46秒前
changl2023完成签到,获得积分10
46秒前
木子李完成签到 ,获得积分10
49秒前
睡到人间煮饭时完成签到 ,获得积分10
49秒前
小鱼完成签到,获得积分10
52秒前
Bill Wang完成签到 ,获得积分0
55秒前
58秒前
甜甜的以筠完成签到 ,获得积分10
59秒前
nenoaowu发布了新的文献求助10
1分钟前
wanci应助nenoaowu采纳,获得10
1分钟前
小瓶盖完成签到 ,获得积分10
1分钟前
小绵羊完成签到,获得积分20
1分钟前
汉堡包应助股价采纳,获得10
1分钟前
孔雀翎完成签到,获得积分10
1分钟前
聂先生完成签到,获得积分10
1分钟前
雨后完成签到 ,获得积分10
1分钟前
上官枫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
sophiemore完成签到,获得积分10
2分钟前
YamDaamCaa应助hjhhjh采纳,获得30
2分钟前
2分钟前
2分钟前
JJ发布了新的文献求助10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251