An Efficient Blockchain Assisted Reputation Aware Decentralized Federated Learning Framework

计算机科学 瓶颈 声誉 激励 符号 差别隐私 相关性(法律) 计算机安全 数据挖掘 微观经济学 法学 政治学 数学 算术 经济 嵌入式系统 社会学 社会科学
作者
Harsh Kasyap,Arpan Manna,Somanath Tripathy
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2771-2782 被引量:13
标识
DOI:10.1109/tnsm.2022.3231283
摘要

Because of the widespread presence and ease of access to the Internet, edge devices are the perfect candidates for providing quality training on a variety of applications. However, their participation is restrained due to potential leakage of sensitive and private data. Federated learning targets to address these issues by bringing the model to the device and keeping the data in place. Still, it suffers from inherent security issues such as malicious participation and unfair contribution. The central server may become a bottleneck as well as induce biased aggregation and incentives. This article proposes a blockchain assisted federated learning framework, which fosters honest participation with reduced overheads, facilitating fair contribution-based weighted incentivization. A new consensus mechanism named PoIS (Proof of Interpretation and Selection) is proposed based on honest clients' contributions. PoIS uses model interpretation techniques for evaluating and calculating individual contributions. The aggregation of feature attributions in PoIS, is able to detect the adversaries, and the label-wise aggregation of attributions across the participants helps to define the prominent contributors. Further, we devise a credit function based on the contribution, relevance as well as the past performance for calculating incentives. Extensive experiments have been carried out for the proposed architecture with different settings, models, and datasets, to verify our claim. It successfully restricts the attack to less than 5%, and selects the prominent (top- ${k}$ ) contributors. Theoretical analysis provides the guarantee for byzantine-robust aggregation, in a malicious setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanxiao发布了新的文献求助10
1秒前
Nico完成签到,获得积分10
1秒前
2秒前
桐桐应助whiteside采纳,获得10
2秒前
青辞发布了新的文献求助10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
小咸鱼完成签到 ,获得积分10
4秒前
浮游呦呦应助科研通管家采纳,获得20
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助滕擎采纳,获得10
5秒前
宗晓曼完成签到 ,获得积分10
5秒前
俏皮绝山完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Daisy发布了新的文献求助10
6秒前
加油发布了新的文献求助10
6秒前
萨尔莫斯完成签到,获得积分10
7秒前
kobe发布了新的文献求助10
9秒前
虚心契发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助10
11秒前
11秒前
Nat完成签到,获得积分10
13秒前
青辞完成签到,获得积分10
14秒前
14秒前
斯文败类应助fdw采纳,获得10
14秒前
15秒前
滕擎发布了新的文献求助10
16秒前
daihahaha完成签到,获得积分10
18秒前
18秒前
虚心契完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292356
求助须知:如何正确求助?哪些是违规求助? 2928672
关于积分的说明 8438208
捐赠科研通 2600770
什么是DOI,文献DOI怎么找? 1419273
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921