电阻随机存取存储器
材料科学
热传导
欧姆接触
重置(财务)
光电子学
氧化物
电压
图层(电子)
缩放比例
记忆电阻器
纳米技术
电气工程
复合材料
经济
冶金
几何学
工程类
金融经济学
数学
作者
Taewook Kim,Tobias Vogel,Eszter Piros,Déspina Nasiou,Nico Kaiser,Philipp Schreyer,Robert Eilhardt,Alexander Zintler,Alexey Arzumanov,Stefan Petzold,Leopoldo Molina‐Luna,Lambert Alff
摘要
HfO2-based resistive random-access memory devices are promising candidates for new memory and computing applications. Hereby, scaling of the devices is a key issue, where overall fundamental switching and conduction mechanisms can be easily influenced by changes in the oxide layer thickness. This work addresses the oxide thickness-dependent resistive switching characteristics in Cu/HfO2/Pt memory devices through bipolar DC switching characterization. Forming, reset, and set characteristics are investigated depending on the oxide layer thickness, revealing a significant difference for thicker compared to thinner films. Thicker samples tend to show a more abrupt reset behavior and a larger set voltage variance, while for thinner samples, a more gradual reset behavior and a low set variance is found. These phenomena can be explained by a model based on thermally assisted electrochemical metallization. Furthermore, to understand the conduction mechanism of the devices, current–voltage curves of the set process were investigated. The devices are found to have an Ohmic conduction mechanism in the lower voltage region generally, while thinner samples tend to show an additional space-charge-limited current conduction mechanism in a higher voltage region.
科研通智能强力驱动
Strongly Powered by AbleSci AI