Hyperspectral Anomaly Detection Using the Spectral–Spatial Graph

高光谱成像 异常检测 邻接矩阵 模式识别(心理学) 邻接表 人工智能 计算机科学 图形 空间分析 像素 拉普拉斯矩阵 数学 遥感 算法 地理 理论计算机科学
作者
Bing Tu,Zhi Wang,Huiting Ouyang,Xianchang Yang,Jun Li,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:27
标识
DOI:10.1109/tgrs.2022.3217329
摘要

Anomaly detection is an important technique for hyperspectral image processing. It aims to find pixels that are markedly different from the background when the target spectrum is unavailable. Many anomaly detection methods have been proposed over the past years, among which graph-based ones have attracted extensive attention. And they usually just consider the spectral information to build the adjacency matrix of the graph, which does not think over the effect of spatial information in this process. This paper proposes a new anomaly detection method using the Spectral-Spatial Graph (SSG) that considers both the spatial and spectral information. Thus, the spatial adjacency matrix and spectral adjacency matrix are constructed from the spatial and spectral dimensions, respectively. To obtain a spectral-spatial graph with more discriminant characteristics, and two different local neighborhood detection strategies are used to measure the similarity of the SSG. Furthermore, global anomaly detection results on hyperspectral images were obtained by the graph Laplacian anomaly detection method and the global and local anomaly detection results were optimized by the differential fusion method. Compared with other anomaly detection algorithms on several synthetic and real data sets, the proposed algorithm shows superior detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长孙明雪完成签到,获得积分10
刚刚
优秀的邪欢完成签到 ,获得积分10
刚刚
刚刚
万圣夜完成签到,获得积分10
刚刚
1秒前
我是老大应助LHZM采纳,获得10
2秒前
2秒前
安安完成签到,获得积分10
3秒前
丝绒发布了新的文献求助10
3秒前
4秒前
CipherSage应助A健采纳,获得10
4秒前
5秒前
乐乐应助12采纳,获得10
5秒前
Hiogteng发布了新的文献求助20
6秒前
tzhzh8发布了新的文献求助20
6秒前
xiaotianli发布了新的文献求助10
6秒前
闪闪乞完成签到,获得积分10
7秒前
诺克萨斯完成签到,获得积分10
7秒前
9秒前
电池小白完成签到,获得积分10
9秒前
wenllian完成签到,获得积分10
9秒前
9秒前
BowieHuang应助乘风文月采纳,获得20
10秒前
10秒前
xucc完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
飘逸锦程完成签到 ,获得积分0
11秒前
12秒前
无花果应助SigRosa采纳,获得10
12秒前
lxy完成签到,获得积分10
12秒前
dandelion完成签到,获得积分10
12秒前
脑洞疼应助阿酒采纳,获得10
12秒前
无花果应助勤奋成风采纳,获得10
13秒前
酷波er应助丝绒采纳,获得10
13秒前
朱信姿完成签到,获得积分10
13秒前
13秒前
lzx关闭了lzx文献求助
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476