Cooperative path planning optimization for multiple UAVs with communication constraints

运动规划 粒子群优化 计算机科学 路径(计算) 水准点(测量) 数学优化 算法 人工智能 机器人 数学 大地测量学 程序设计语言 地理
作者
Liang Xu,Xianbin Cao,Wenbo Du,Yumeng Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110164-110164 被引量:55
标识
DOI:10.1016/j.knosys.2022.110164
摘要

Path planning is a complicated optimization problem that is crucial for the safe flight of unmanned aerial vehicles (UAVs). Especially in the scenarios involving multiple UAVs, this problem is highly challenging due to the constraints of complex environments, various tasks and inherent UAV maneuverability. In this paper, a cooperative path planning model for multiple UAVs is presented. In addition to common limitations such as the path length minimization, UAV maneuverability limitation and collision avoidance, the communication requirements between UAVs and the impact of obstacles in the flight environment on the quality of communication are also taken into account in the presented path planning model. On this basis, the corresponding objective function is designed. Then, an improved particle swarm optimization (PSO) algorithm is proposed to solve the above path planning problem. Utilizing the ideas of the dynamic multi-swarm PSO (DMSPSO) algorithm and the comprehensive learning PSO (CLPSO) algorithm, the proposed algorithm, denoted as CL-DMSPSO, further improves the performance of both algorithms. The effectiveness and superiority of the novel CL-DMSPSO algorithm is verified on benchmark functions, especially for complex multimodal functions. Finally, we present an effective path planning method using CL-DMSPSO to generate optimized flyable paths for multiple UAVs. And simulation and comparison results on the designed scenario indicate the proposed UAV path planning method can efficiently plan high-quality paths for UAVs and demonstrate the advantages of the proposed CL-DMSPSO algorithm compared with other PSO algorithms in UAV path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木香完成签到,获得积分10
1秒前
尘雾发布了新的文献求助10
2秒前
3秒前
高鑫完成签到 ,获得积分10
3秒前
英姑应助dd采纳,获得10
3秒前
Chan0501关注了科研通微信公众号
4秒前
4秒前
研友_LMNjkn发布了新的文献求助10
4秒前
tjunqi完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助下课了吧采纳,获得10
6秒前
6秒前
6秒前
好的完成签到,获得积分20
7秒前
蜂蜜不是糖完成签到 ,获得积分10
7秒前
狮子最爱吃芒果完成签到,获得积分10
7秒前
8秒前
9秒前
尘雾完成签到,获得积分10
9秒前
澜生发布了新的文献求助10
10秒前
leekle完成签到,获得积分10
11秒前
shengChen发布了新的文献求助10
11秒前
自信鞯发布了新的文献求助10
12秒前
江北小赵完成签到,获得积分10
12秒前
12秒前
12秒前
clock完成签到 ,获得积分10
12秒前
虫二先生完成签到 ,获得积分10
12秒前
甜甜的难敌完成签到,获得积分10
13秒前
13秒前
14秒前
小潘同学完成签到,获得积分10
14秒前
14秒前
科研通AI5应助传统的海露采纳,获得10
15秒前
学术刘亦菲完成签到,获得积分10
15秒前
成就的烧鹅完成签到,获得积分20
15秒前
16秒前
dd发布了新的文献求助10
16秒前
luoshi应助leon采纳,获得30
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794