Cooperative path planning optimization for multiple UAVs with communication constraints

运动规划 粒子群优化 计算机科学 路径(计算) 水准点(测量) 数学优化 算法 人工智能 机器人 数学 大地测量学 程序设计语言 地理
作者
Liang Xu,Xianbin Cao,Wenbo Du,Yumeng Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110164-110164 被引量:53
标识
DOI:10.1016/j.knosys.2022.110164
摘要

Path planning is a complicated optimization problem that is crucial for the safe flight of unmanned aerial vehicles (UAVs). Especially in the scenarios involving multiple UAVs, this problem is highly challenging due to the constraints of complex environments, various tasks and inherent UAV maneuverability. In this paper, a cooperative path planning model for multiple UAVs is presented. In addition to common limitations such as the path length minimization, UAV maneuverability limitation and collision avoidance, the communication requirements between UAVs and the impact of obstacles in the flight environment on the quality of communication are also taken into account in the presented path planning model. On this basis, the corresponding objective function is designed. Then, an improved particle swarm optimization (PSO) algorithm is proposed to solve the above path planning problem. Utilizing the ideas of the dynamic multi-swarm PSO (DMSPSO) algorithm and the comprehensive learning PSO (CLPSO) algorithm, the proposed algorithm, denoted as CL-DMSPSO, further improves the performance of both algorithms. The effectiveness and superiority of the novel CL-DMSPSO algorithm is verified on benchmark functions, especially for complex multimodal functions. Finally, we present an effective path planning method using CL-DMSPSO to generate optimized flyable paths for multiple UAVs. And simulation and comparison results on the designed scenario indicate the proposed UAV path planning method can efficiently plan high-quality paths for UAVs and demonstrate the advantages of the proposed CL-DMSPSO algorithm compared with other PSO algorithms in UAV path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听剑心完成签到 ,获得积分10
刚刚
刚刚
qly应助volition采纳,获得10
刚刚
CipherSage应助archer01采纳,获得10
3秒前
www发布了新的文献求助10
3秒前
孙ym发布了新的文献求助10
4秒前
xingxing完成签到,获得积分10
4秒前
5秒前
qi发布了新的文献求助10
5秒前
6秒前
8秒前
9秒前
lzy发布了新的文献求助10
10秒前
藤藤菜发布了新的文献求助10
10秒前
12秒前
yangjoy发布了新的文献求助10
12秒前
13秒前
yanjiuhuzu完成签到,获得积分10
13秒前
缥缈老九完成签到,获得积分10
14秒前
guozizi发布了新的文献求助10
14秒前
苹果立果发布了新的文献求助30
16秒前
小杨完成签到,获得积分10
16秒前
按揭发布了新的文献求助10
18秒前
eschew完成签到,获得积分10
18秒前
xx发布了新的文献求助10
18秒前
19秒前
情怀应助guozizi采纳,获得10
20秒前
21秒前
望月完成签到,获得积分10
24秒前
michaelzhao发布了新的文献求助10
25秒前
26秒前
zxh发布了新的文献求助10
26秒前
可爱的函函应助qly采纳,获得10
27秒前
28秒前
28秒前
Sun发布了新的文献求助10
29秒前
爱静静应助www采纳,获得10
30秒前
Jasper应助www采纳,获得10
30秒前
TomatoRin发布了新的文献求助10
32秒前
xx关注了科研通微信公众号
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316339
求助须知:如何正确求助?哪些是违规求助? 2948037
关于积分的说明 8539126
捐赠科研通 2624046
什么是DOI,文献DOI怎么找? 1435703
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532