Subject adaptation convolutional neural network for EEG-based motor imagery classification

计算机科学 人工智能 脑-机接口 模式识别(心理学) 脑电图 卷积神经网络 特征提取 分类器(UML) 提取器 深度学习 运动表象 语音识别 心理学 工艺工程 精神科 工程类
作者
Siwei Liu,Jia Zhang,Andong Wang,Hanrui Wu,Qibin Zhao,Jinyi Long
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066003-066003 被引量:1
标识
DOI:10.1088/1741-2552/ac9c94
摘要

Objective.Deep transfer learning has been widely used to address the nonstationarity of electroencephalogram (EEG) data during motor imagery (MI) classification. However, previous deep learning approaches suffer from limited classification accuracy because the temporal and spatial features cannot be effectively extracted.Approach.Here, we propose a novel end-to-end deep subject adaptation convolutional neural network (SACNN) to handle the problem of EEG-based MI classification. Our proposed model jointly optimizes three modules, i.e. a feature extractor, a classifier, and a subject adapter. Specifically, the feature extractor simultaneously extracts the temporal and spatial features from the raw EEG data using a parallel multiscale convolution network. In addition, we design a subject adapter to reduce the feature distribution shift between the source and target subjects by using the maximum mean discrepancy. By minimizing the classification loss and the distribution discrepancy, the model is able to extract the temporal-spatial features to the prediction of a new subject.Main results.Extensive experiments are carried out on three EEG-based MI datasets, i.e. brain-computer interface (BCI) competition IV dataset IIb, BCI competition III dataset IVa, and BCI competition IV dataset I, and the average accuracy reaches to 86.42%, 81.71% and 79.35% on the three datasets respectively. Furthermore, the statistical analysis also indicates the significant performance improvement of SACNN.Significance.This paper reveals the importance of the temporal-spatial features on EEG-based MI classification task. Our proposed SACNN model can make fully use of the temporal-spatial information to achieve the purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sabrina完成签到,获得积分10
1秒前
老张完成签到 ,获得积分10
1秒前
2秒前
单纯胡萝卜完成签到,获得积分10
3秒前
luo完成签到,获得积分10
3秒前
3秒前
虚幻夜白发布了新的文献求助10
4秒前
4秒前
张涛发布了新的文献求助30
4秒前
4秒前
圆圆发布了新的文献求助10
5秒前
6秒前
玉玉鼠发布了新的文献求助10
6秒前
7秒前
刘洋发布了新的文献求助10
8秒前
8秒前
笨笨西牛发布了新的文献求助10
8秒前
jy完成签到 ,获得积分10
9秒前
to高坚果发布了新的文献求助10
9秒前
passerby发布了新的文献求助10
10秒前
10秒前
pdx666完成签到,获得积分10
12秒前
丘比特应助缪伟采纳,获得10
12秒前
JXY完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
知名不具发布了新的文献求助10
13秒前
赫连烙发布了新的文献求助10
14秒前
笑点低的秋蝶完成签到,获得积分10
15秒前
叮叮当当发布了新的文献求助30
16秒前
16秒前
ying完成签到,获得积分10
16秒前
dopamine发布了新的文献求助10
17秒前
麦乐迪应助圆圆采纳,获得10
18秒前
19秒前
幼儿园老大完成签到,获得积分10
19秒前
infe完成签到,获得积分10
19秒前
高高完成签到,获得积分10
19秒前
可爱问寒完成签到 ,获得积分20
20秒前
乘乘完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176