Subject adaptation convolutional neural network for EEG-based motor imagery classification

计算机科学 人工智能 脑-机接口 模式识别(心理学) 脑电图 卷积神经网络 特征提取 分类器(UML) 提取器 深度学习 运动表象 语音识别 心理学 工艺工程 精神科 工程类
作者
Siwei Liu,Jia Zhang,Andong Wang,Hanrui Wu,Qibin Zhao,Jinyi Long
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066003-066003 被引量:1
标识
DOI:10.1088/1741-2552/ac9c94
摘要

Objective.Deep transfer learning has been widely used to address the nonstationarity of electroencephalogram (EEG) data during motor imagery (MI) classification. However, previous deep learning approaches suffer from limited classification accuracy because the temporal and spatial features cannot be effectively extracted.Approach.Here, we propose a novel end-to-end deep subject adaptation convolutional neural network (SACNN) to handle the problem of EEG-based MI classification. Our proposed model jointly optimizes three modules, i.e. a feature extractor, a classifier, and a subject adapter. Specifically, the feature extractor simultaneously extracts the temporal and spatial features from the raw EEG data using a parallel multiscale convolution network. In addition, we design a subject adapter to reduce the feature distribution shift between the source and target subjects by using the maximum mean discrepancy. By minimizing the classification loss and the distribution discrepancy, the model is able to extract the temporal-spatial features to the prediction of a new subject.Main results.Extensive experiments are carried out on three EEG-based MI datasets, i.e. brain-computer interface (BCI) competition IV dataset IIb, BCI competition III dataset IVa, and BCI competition IV dataset I, and the average accuracy reaches to 86.42%, 81.71% and 79.35% on the three datasets respectively. Furthermore, the statistical analysis also indicates the significant performance improvement of SACNN.Significance.This paper reveals the importance of the temporal-spatial features on EEG-based MI classification task. Our proposed SACNN model can make fully use of the temporal-spatial information to achieve the purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助田宇22333采纳,获得10
刚刚
刚刚
故意的枫发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
LHR完成签到,获得积分10
5秒前
6秒前
6秒前
NEO发布了新的文献求助10
7秒前
大师现在发布了新的文献求助10
8秒前
乐乐应助1234采纳,获得10
10秒前
10秒前
10秒前
故意的枫完成签到,获得积分10
11秒前
晨Zhi发布了新的文献求助10
11秒前
11秒前
打打应助欢呼的梦琪采纳,获得30
11秒前
AAA888发布了新的文献求助10
11秒前
12秒前
dazed2给dazed2的求助进行了留言
12秒前
12秒前
pei发布了新的文献求助10
12秒前
Lim1819完成签到 ,获得积分10
12秒前
聪慧馒头完成签到,获得积分20
13秒前
dreamlightzy应助隐形天空采纳,获得10
13秒前
14秒前
14秒前
15秒前
彪壮的嵩发布了新的文献求助10
15秒前
xzy998应助阔达的千凝采纳,获得10
15秒前
Criminology34应助邱屁屁采纳,获得10
15秒前
木木完成签到,获得积分10
16秒前
Oculus发布了新的文献求助10
17秒前
18秒前
晨Zhi完成签到,获得积分10
18秒前
zrk发布了新的文献求助10
20秒前
邱屁屁完成签到,获得积分10
22秒前
22秒前
无情的烨霖完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289776
求助须知:如何正确求助?哪些是违规求助? 4441239
关于积分的说明 13827000
捐赠科研通 4323723
什么是DOI,文献DOI怎么找? 2373289
邀请新用户注册赠送积分活动 1368718
关于科研通互助平台的介绍 1332650