Subject adaptation convolutional neural network for EEG-based motor imagery classification

计算机科学 人工智能 脑-机接口 模式识别(心理学) 脑电图 卷积神经网络 特征提取 分类器(UML) 提取器 深度学习 运动表象 语音识别 心理学 工艺工程 精神科 工程类
作者
Siwei Liu,Jia Zhang,Andong Wang,Hanrui Wu,Qibin Zhao,Jinyi Long
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066003-066003 被引量:1
标识
DOI:10.1088/1741-2552/ac9c94
摘要

Objective.Deep transfer learning has been widely used to address the nonstationarity of electroencephalogram (EEG) data during motor imagery (MI) classification. However, previous deep learning approaches suffer from limited classification accuracy because the temporal and spatial features cannot be effectively extracted.Approach.Here, we propose a novel end-to-end deep subject adaptation convolutional neural network (SACNN) to handle the problem of EEG-based MI classification. Our proposed model jointly optimizes three modules, i.e. a feature extractor, a classifier, and a subject adapter. Specifically, the feature extractor simultaneously extracts the temporal and spatial features from the raw EEG data using a parallel multiscale convolution network. In addition, we design a subject adapter to reduce the feature distribution shift between the source and target subjects by using the maximum mean discrepancy. By minimizing the classification loss and the distribution discrepancy, the model is able to extract the temporal-spatial features to the prediction of a new subject.Main results.Extensive experiments are carried out on three EEG-based MI datasets, i.e. brain-computer interface (BCI) competition IV dataset IIb, BCI competition III dataset IVa, and BCI competition IV dataset I, and the average accuracy reaches to 86.42%, 81.71% and 79.35% on the three datasets respectively. Furthermore, the statistical analysis also indicates the significant performance improvement of SACNN.Significance.This paper reveals the importance of the temporal-spatial features on EEG-based MI classification task. Our proposed SACNN model can make fully use of the temporal-spatial information to achieve the purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
三三磊完成签到,获得积分10
1秒前
phy完成签到,获得积分10
1秒前
谜记完成签到,获得积分10
2秒前
2秒前
Gao发布了新的文献求助10
2秒前
2秒前
细腻的青柏完成签到,获得积分10
3秒前
不慌不慌完成签到,获得积分10
3秒前
Connor完成签到,获得积分10
4秒前
曹国庆完成签到 ,获得积分10
4秒前
hkh发布了新的文献求助10
5秒前
空城完成签到,获得积分10
5秒前
少吃一口完成签到,获得积分10
5秒前
MR完成签到,获得积分10
5秒前
zc98发布了新的文献求助10
5秒前
gty完成签到,获得积分10
6秒前
6秒前
今后应助优雅战斗机采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
RON发布了新的文献求助10
7秒前
wang完成签到,获得积分10
7秒前
7秒前
yiren完成签到,获得积分10
7秒前
ssssssssci完成签到,获得积分10
7秒前
热心如彤完成签到 ,获得积分20
7秒前
7秒前
8秒前
奶油布丁完成签到,获得积分10
8秒前
pluto应助粗心的听安采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855