计算机科学
人工智能
脑-机接口
模式识别(心理学)
脑电图
卷积神经网络
特征提取
分类器(UML)
提取器
深度学习
运动表象
语音识别
心理学
工艺工程
精神科
工程类
作者
Siwei Liu,Jia Zhang,Andong Wang,Hanrui Wu,Qibin Zhao,Jinyi Long
出处
期刊:Journal of Neural Engineering
[IOP Publishing]
日期:2022-10-21
卷期号:19 (6): 066003-066003
被引量:1
标识
DOI:10.1088/1741-2552/ac9c94
摘要
Objective.Deep transfer learning has been widely used to address the nonstationarity of electroencephalogram (EEG) data during motor imagery (MI) classification. However, previous deep learning approaches suffer from limited classification accuracy because the temporal and spatial features cannot be effectively extracted.Approach.Here, we propose a novel end-to-end deep subject adaptation convolutional neural network (SACNN) to handle the problem of EEG-based MI classification. Our proposed model jointly optimizes three modules, i.e. a feature extractor, a classifier, and a subject adapter. Specifically, the feature extractor simultaneously extracts the temporal and spatial features from the raw EEG data using a parallel multiscale convolution network. In addition, we design a subject adapter to reduce the feature distribution shift between the source and target subjects by using the maximum mean discrepancy. By minimizing the classification loss and the distribution discrepancy, the model is able to extract the temporal-spatial features to the prediction of a new subject.Main results.Extensive experiments are carried out on three EEG-based MI datasets, i.e. brain-computer interface (BCI) competition IV dataset IIb, BCI competition III dataset IVa, and BCI competition IV dataset I, and the average accuracy reaches to 86.42%, 81.71% and 79.35% on the three datasets respectively. Furthermore, the statistical analysis also indicates the significant performance improvement of SACNN.Significance.This paper reveals the importance of the temporal-spatial features on EEG-based MI classification task. Our proposed SACNN model can make fully use of the temporal-spatial information to achieve the purpose.
科研通智能强力驱动
Strongly Powered by AbleSci AI