Subject adaptation convolutional neural network for EEG-based motor imagery classification

计算机科学 人工智能 脑-机接口 模式识别(心理学) 脑电图 卷积神经网络 特征提取 分类器(UML) 提取器 深度学习 运动表象 语音识别 心理学 工艺工程 精神科 工程类
作者
Siwei Liu,Jia Zhang,Andong Wang,Hanrui Wu,Qibin Zhao,Jinyi Long
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066003-066003 被引量:1
标识
DOI:10.1088/1741-2552/ac9c94
摘要

Objective.Deep transfer learning has been widely used to address the nonstationarity of electroencephalogram (EEG) data during motor imagery (MI) classification. However, previous deep learning approaches suffer from limited classification accuracy because the temporal and spatial features cannot be effectively extracted.Approach.Here, we propose a novel end-to-end deep subject adaptation convolutional neural network (SACNN) to handle the problem of EEG-based MI classification. Our proposed model jointly optimizes three modules, i.e. a feature extractor, a classifier, and a subject adapter. Specifically, the feature extractor simultaneously extracts the temporal and spatial features from the raw EEG data using a parallel multiscale convolution network. In addition, we design a subject adapter to reduce the feature distribution shift between the source and target subjects by using the maximum mean discrepancy. By minimizing the classification loss and the distribution discrepancy, the model is able to extract the temporal-spatial features to the prediction of a new subject.Main results.Extensive experiments are carried out on three EEG-based MI datasets, i.e. brain-computer interface (BCI) competition IV dataset IIb, BCI competition III dataset IVa, and BCI competition IV dataset I, and the average accuracy reaches to 86.42%, 81.71% and 79.35% on the three datasets respectively. Furthermore, the statistical analysis also indicates the significant performance improvement of SACNN.Significance.This paper reveals the importance of the temporal-spatial features on EEG-based MI classification task. Our proposed SACNN model can make fully use of the temporal-spatial information to achieve the purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助月下独酌采纳,获得10
1秒前
114koi完成签到,获得积分10
1秒前
1秒前
Jianyu发布了新的文献求助10
2秒前
霖lin发布了新的文献求助10
2秒前
2秒前
海海发布了新的文献求助10
3秒前
3秒前
3秒前
斯文明杰发布了新的文献求助10
4秒前
汤泡泡完成签到,获得积分10
4秒前
xx完成签到,获得积分20
5秒前
浮游应助友好的小鸽子采纳,获得10
6秒前
6秒前
搜集达人应助CDX采纳,获得10
6秒前
erfc发布了新的文献求助10
6秒前
7秒前
mjq完成签到,获得积分10
7秒前
Nana1000发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助150
8秒前
9秒前
科研通AI5应助零零二采纳,获得10
10秒前
10秒前
铃科百合子完成签到,获得积分10
10秒前
浮生若梦完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
大个应助Jianyu采纳,获得10
12秒前
星空完成签到,获得积分10
12秒前
13秒前
小的金鱼发布了新的文献求助10
13秒前
lyt发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
大模型应助ceeray23采纳,获得20
15秒前
代杰居然发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099