Heteroepitaxial Growth of Vertically-Aligned GaN Single-Crystalline Microrod Arrays on Silicon Substrates

材料科学 化学气相沉积 基质(水族馆) 氮化镓 Crystal(编程语言) 纳米技术 光电子学 晶体生长 金属有机气相外延 氮化硅 外延 化学工程 结晶学 图层(电子) 化学 冶金 海洋学 计算机科学 程序设计语言 地质学 工程类
作者
Chun-Wei Chuang,Franklin Chau–Nan Hong
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (43): 38289-38298 被引量:1
标识
DOI:10.1021/acsomega.2c02204
摘要

The heteroepitaxial growth of vertically aligned gallium nitride (GaN) single-crystalline microrod arrays on silicon substrates was achieved with high reproducibility by using the plasma-enhanced chemical vapor deposition (PECVD) method in the furnace. By reducing the plasma power from 70 to 15 W, the crystal morphology of GaN varied from thin films to microrod arrays with the decreased V/III gas ratio. The growth of GaN crystals occurred in the vertical direction of the substrate and in the lateral direction of the growth axis via the self-catalytic vapor-liquid-solid mechanism (VLS mechanism) and the vapor-solid mechanism (VS mechanism), respectively, contributing to the formation of inverted hexagonal GaN cone microrods. Furthermore, the morphology of inverted hexagonal GaN cone microrods shows extremely small contact areas between the microrods and the substrate, suggesting the potential to solve the problems of stress accumulation and poor crystalline qualities of heteroepitaxy. With the raised growth temperature of GaN from 930 to 980 °C, the material quality was improved and the high crystalline qualities were obtained, owing to the successful surface migration of gallium atoms. However, the density of GaN microrods became lower with the increased growth temperature because the spatial temperature gradient was reduced and the evaporation of gallium was enhanced, leading to fewer gallium atoms precipitating and remaining on the substrate. The growth direction of vertically aligned GaN single-crystalline microrod arrays with the (002) crystal plane is along the [0001] orientation (c axis) and normal to the substrate surface, which may bring about many device applications in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
南笙完成签到,获得积分10
2秒前
Geo_new发布了新的文献求助10
3秒前
压缩应助科研通管家采纳,获得10
3秒前
传奇3应助zyqi采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Quinny应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得30
3秒前
田様应助开心蛋挞采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
lch23560应助科研通管家采纳,获得50
3秒前
Jason发布了新的文献求助10
3秒前
今后应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
77发布了新的文献求助30
5秒前
淡定沧海发布了新的文献求助10
6秒前
msl2023发布了新的文献求助10
6秒前
7秒前
7秒前
HC发布了新的文献求助10
7秒前
CodeCraft应助迷了路的猫采纳,获得10
8秒前
HotnessK发布了新的文献求助30
9秒前
七个丸子完成签到,获得积分10
9秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570