A recurrent-neural-network-based generalized ground-motion model for the Chilean subduction seismic environment

力矩震级标度 强地震动 俯冲 峰值地面加速度 地震动 地震学 加速度 光谱加速度 地质学 强度(物理) 断层(地质) 力矩(物理) 大地测量学 物理 数学 几何学 光学 经典力学 缩放比例 构造学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
出处
期刊:Structural Safety [Elsevier]
卷期号:100: 102282-102282 被引量:14
标识
DOI:10.1016/j.strusafe.2022.102282
摘要

This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
淞淞于我完成签到 ,获得积分10
10秒前
花花发布了新的文献求助10
10秒前
灵巧的朝雪完成签到 ,获得积分10
12秒前
陈秋完成签到,获得积分10
14秒前
跳跃的鹏飞完成签到 ,获得积分0
19秒前
哥哥发布了新的文献求助10
19秒前
xgx984完成签到,获得积分10
20秒前
leemiii完成签到 ,获得积分10
38秒前
Lyw完成签到 ,获得积分10
42秒前
夕阳下仰望完成签到 ,获得积分10
44秒前
陌上完成签到 ,获得积分10
50秒前
单纯的小土豆完成签到 ,获得积分0
52秒前
guoxihan完成签到,获得积分10
1分钟前
puritan完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
夜未央完成签到 ,获得积分10
1分钟前
DZS完成签到 ,获得积分10
1分钟前
wml发布了新的文献求助10
1分钟前
七厘米发布了新的文献求助10
1分钟前
506407完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
liukanhai完成签到,获得积分10
1分钟前
豆⑧完成签到,获得积分10
1分钟前
不劳而获完成签到 ,获得积分10
1分钟前
JUN完成签到,获得积分10
1分钟前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
2分钟前
瞿人雄完成签到,获得积分10
2分钟前
龙弟弟完成签到 ,获得积分10
2分钟前
没心没肺完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370