力矩震级标度
强地震动
俯冲
峰值地面加速度
地震动
地震学
加速度
光谱加速度
地质学
强度(物理)
断层(地质)
力矩(物理)
大地测量学
物理
数学
几何学
光学
缩放比例
构造学
经典力学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
标识
DOI:10.1016/j.strusafe.2022.102282
摘要
This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.
科研通智能强力驱动
Strongly Powered by AbleSci AI