A recurrent-neural-network-based generalized ground-motion model for the Chilean subduction seismic environment

力矩震级标度 强地震动 俯冲 峰值地面加速度 地震动 地震学 加速度 光谱加速度 地质学 强度(物理) 断层(地质) 力矩(物理) 大地测量学 物理 数学 几何学 光学 经典力学 缩放比例 构造学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
出处
期刊:Structural Safety [Elsevier]
卷期号:100: 102282-102282 被引量:14
标识
DOI:10.1016/j.strusafe.2022.102282
摘要

This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
所所应助zhangxq采纳,获得10
2秒前
2秒前
文静季节发布了新的文献求助10
2秒前
3秒前
3秒前
优雅愚志完成签到,获得积分10
3秒前
月圆夜应助舒适蜗牛采纳,获得50
4秒前
橙小胖发布了新的文献求助10
4秒前
敬之发布了新的文献求助10
4秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
5秒前
jin完成签到,获得积分10
5秒前
开心阑悦发布了新的文献求助10
6秒前
搜集达人应助LHW采纳,获得10
6秒前
dian完成签到,获得积分10
6秒前
传奇3应助快乐觅露采纳,获得10
6秒前
言西早完成签到 ,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
活力怀绿完成签到,获得积分10
8秒前
上官若男应助surivial采纳,获得10
8秒前
8秒前
8秒前
8秒前
耿耿完成签到,获得积分10
8秒前
梁辉完成签到,获得积分10
9秒前
彭于晏应助风181013采纳,获得10
9秒前
素霞发布了新的文献求助10
10秒前
失眠惜海完成签到,获得积分10
10秒前
10秒前
雨陌应助爱学习采纳,获得10
11秒前
11秒前
王井彦完成签到,获得积分10
12秒前
12秒前
良璞发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851