A recurrent-neural-network-based generalized ground-motion model for the Chilean subduction seismic environment

力矩震级标度 强地震动 俯冲 峰值地面加速度 地震动 地震学 加速度 光谱加速度 地质学 强度(物理) 断层(地质) 力矩(物理) 大地测量学 物理 数学 几何学 光学 缩放比例 构造学 经典力学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
出处
期刊:Structural Safety [Elsevier]
卷期号:100: 102282-102282 被引量:14
标识
DOI:10.1016/j.strusafe.2022.102282
摘要

This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酷波er应助otto12306采纳,获得10
1秒前
JZH发布了新的文献求助10
1秒前
喵喵盖被发布了新的文献求助10
1秒前
kk完成签到,获得积分10
2秒前
radom完成签到,获得积分10
2秒前
Akim应助王泽采纳,获得10
2秒前
八九完成签到,获得积分20
2秒前
祁缜完成签到,获得积分10
2秒前
Wmhuahuaood完成签到,获得积分20
3秒前
snwnqi应助Chang采纳,获得10
3秒前
3秒前
霸气咖啡豆完成签到,获得积分10
4秒前
白白SAMA123发布了新的文献求助10
4秒前
4秒前
愿好应助子铭采纳,获得10
5秒前
小马甲应助寂寞的小乌龟采纳,获得10
5秒前
糖果不甜发布了新的文献求助10
6秒前
xiaoX12138发布了新的文献求助10
6秒前
acme完成签到,获得积分10
6秒前
Jasper应助血鸚鵡采纳,获得20
6秒前
6秒前
7秒前
7秒前
8秒前
Lucas应助fantianhui采纳,获得30
8秒前
嘿嘿发布了新的文献求助10
9秒前
干净黄豆完成签到,获得积分10
9秒前
隐形曼青应助我的昵称采纳,获得30
9秒前
隐形曼青应助小赵冲冲冲采纳,获得10
9秒前
10秒前
阿阳发布了新的文献求助10
10秒前
10秒前
FSX639163发布了新的文献求助10
10秒前
10秒前
大气鹰发布了新的文献求助10
11秒前
共享精神应助微笑奇迹采纳,获得10
11秒前
mrjohn发布了新的文献求助150
11秒前
优美的玉米完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745