A recurrent-neural-network-based generalized ground-motion model for the Chilean subduction seismic environment

力矩震级标度 强地震动 俯冲 峰值地面加速度 地震动 地震学 加速度 光谱加速度 地质学 强度(物理) 断层(地质) 力矩(物理) 大地测量学 物理 数学 几何学 光学 经典力学 缩放比例 构造学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
出处
期刊:Structural Safety [Elsevier BV]
卷期号:100: 102282-102282 被引量:14
标识
DOI:10.1016/j.strusafe.2022.102282
摘要

This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
5秒前
nkuwangkai完成签到,获得积分10
7秒前
meimei发布了新的文献求助30
7秒前
james发布了新的文献求助10
7秒前
7秒前
8秒前
pgg发布了新的文献求助10
9秒前
秋山柳发布了新的文献求助10
9秒前
赵医生完成签到,获得积分10
10秒前
10秒前
11秒前
深情安青应助pgg采纳,获得10
12秒前
汉堡包应助SMLW采纳,获得10
13秒前
13秒前
hhllhh发布了新的文献求助10
14秒前
15秒前
皮皮卡发布了新的文献求助10
15秒前
linxy完成签到,获得积分20
15秒前
华仔应助熊熊采纳,获得10
17秒前
17秒前
小鹿斑比发布了新的文献求助10
17秒前
19秒前
zorro3574发布了新的文献求助10
21秒前
Jasper应助高高初柔采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
酷酷的冰真应助多喝水采纳,获得20
24秒前
Shirley发布了新的文献求助200
25秒前
27秒前
30秒前
西厢张生完成签到,获得积分10
30秒前
30秒前
123完成签到 ,获得积分0
31秒前
Ascender发布了新的文献求助10
32秒前
高高初柔发布了新的文献求助10
33秒前
34秒前
王果果发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019