亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A recurrent-neural-network-based generalized ground-motion model for the Chilean subduction seismic environment

力矩震级标度 强地震动 俯冲 峰值地面加速度 地震动 地震学 加速度 光谱加速度 地质学 强度(物理) 断层(地质) 力矩(物理) 大地测量学 物理 数学 几何学 光学 经典力学 缩放比例 构造学
作者
Jawad Fayaz,Miguel Medalla,Pablo Torres‐Rodas,Carmine Galasso
出处
期刊:Structural Safety [Elsevier]
卷期号:100: 102282-102282 被引量:14
标识
DOI:10.1016/j.strusafe.2022.102282
摘要

This paper proposes a deep learning-based generalized ground motion model (GGMM) for interface and intraslab subduction earthquakes recorded in Chile. A total of ∼7000 ground-motion records from ∼1700 events are used to train the proposed GGMM. Unlike common ground-motion models (GMMs), which generally consider individual ground-motion intensity measures such as peak ground acceleration and spectral accelerations at given structural periods, the proposed GGMM is based on a data-driven framework that coherently uses recurrent neural networks (RNNs) and hierarchical mixed-effects regression to output a cross-dependent vector of 35 ground-motion intensity measures (denoted as IM). The IM vector includes geometric mean of Arias intensity, peak ground velocity, peak ground acceleration, and significant duration (denoted as Iageom, PGVgeom, PGAgeom, and D5-95geom, respectively), and RotD50 spectral accelerations at 31 periods between 0.05 and 5 s for a 5 % damped oscillator (denoted as Sa(T)). The inputs to the GGMM include six causal seismic source and site parameters, including fault slab mechanism, moment magnitude, closest rupture distance, Joyne-Boore distance, soil shear-wave velocity, and hypocentral depth. The statistical evaluation of the proposed GGMM shows high prediction power with R2 > 0.7 for most IMs while maintaining the cross-IM dependencies. Furthermore, the GGMM is carefully compared against two state-of-the-art Chilean GMMs, showing that the proposed GGMM leads to better goodness of fit for all periods of Sa(T) compared to the two considered GMMs (on average 0.2 higher R2). Finally, the GGMM is implemented to select hazard-consistent ground motions for nonlinear time history analysis of a sophisticated finite-element model of a 20-story steel special moment-resisting frame. Results of this analysis are statistically compared against those for hazard-consistent ground motions selected based on the conditional mean spectrum (CMS) approach. In general, it is observed that the drift demands computed using the two approaches cannot be considered statistically similar and the GGMM leads to higher demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助ma采纳,获得10
3秒前
9秒前
ma发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
支雨泽完成签到,获得积分10
45秒前
56秒前
桐桐应助科研通管家采纳,获得10
56秒前
1分钟前
turtle完成签到 ,获得积分10
1分钟前
曦颜发布了新的文献求助10
1分钟前
3分钟前
温不胜的破木吉他完成签到 ,获得积分10
3分钟前
4分钟前
kukudou2发布了新的文献求助10
4分钟前
我是老大应助信陵君无忌采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
曦颜发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
cheng完成签到,获得积分10
5分钟前
群群完成签到,获得积分20
5分钟前
群群发布了新的文献求助10
5分钟前
5分钟前
smottom应助信陵君无忌采纳,获得10
6分钟前
Akim应助信陵君无忌采纳,获得10
6分钟前
熬夜波比应助信陵君无忌采纳,获得10
6分钟前
Ava应助信陵君无忌采纳,获得10
6分钟前
FashionBoy应助信陵君无忌采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
pups发布了新的文献求助20
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
李健应助pups采纳,获得20
6分钟前
科研通AI6应助信陵君无忌采纳,获得10
7分钟前
CipherSage应助信陵君无忌采纳,获得10
7分钟前
ikouyo完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671268
求助须知:如何正确求助?哪些是违规求助? 4913301
关于积分的说明 15134352
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586711
邀请新用户注册赠送积分活动 1540300
关于科研通互助平台的介绍 1498516