Hybrid voice activity detection system based on LSTM and auditory speech features

语音识别 计算机科学 语音活动检测 人工智能 语音处理
作者
Yunus Korkmaz,Aytuğ Boyacı
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104408-104408 被引量:13
标识
DOI:10.1016/j.bspc.2022.104408
摘要

Voice Activity Detection (VAD), sometimes called as Speech Activity Detection, is the process of extracting speech regions in audio recordings including many type of sounds. Because undesired data causes both computational complexity and time wasting, most of speech based applications consider only speech part (region of interest) and ignore the rest. This is the main reason that makes usage of the VAD stands a preliminary stage in applications like automatic speech recognition (ASR), speaker identification/verification, speech enhancement, speaker diarization etc. In this study, a successful semi-supervised VAD system, which we named as "hybridVAD", was proposed especially for the environment with high signal-to-noise ratio (SNR) with the manner of two-stage. At first, VAD decision was obtained from a relatively simple Long-Short Term Memory (LSTM) network trained by auditory speech features like energy, zero crossing rate (ZCR) and 13rd order-Mel Frequency Cepstral Coefficients (MFCC). After we applied a reasonable thresholding strategy to the same features to have second VAD decision, we combined both decisions with logical operators. The result was surprisingly showed that final VAD decision have low FEC and OVER errors, which are specifically critical for any speaker diarization system, mostly in the environments with high SNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果冻泥完成签到 ,获得积分20
刚刚
飞龙在天完成签到,获得积分10
2秒前
慕冰蝶完成签到,获得积分20
3秒前
皮皮的章鱼烧完成签到,获得积分10
3秒前
coff完成签到,获得积分10
3秒前
大聪明发布了新的文献求助10
4秒前
菜菜鱼完成签到,获得积分10
4秒前
蔷薇完成签到,获得积分10
4秒前
Zz完成签到 ,获得积分0
5秒前
跳跃幻儿发布了新的文献求助40
8秒前
夕赣完成签到 ,获得积分10
8秒前
飞舞的青鱼完成签到,获得积分10
8秒前
叼面包的数学狗完成签到 ,获得积分10
8秒前
99完成签到,获得积分10
10秒前
10秒前
huyan完成签到,获得积分10
11秒前
栗子完成签到,获得积分10
11秒前
恶恶么v完成签到,获得积分10
11秒前
echo完成签到,获得积分10
12秒前
鳗鱼鸽子完成签到,获得积分10
12秒前
徐勇完成签到 ,获得积分10
12秒前
JN完成签到 ,获得积分10
12秒前
laola完成签到,获得积分10
13秒前
13秒前
qutt完成签到 ,获得积分10
14秒前
14秒前
韩靖仇完成签到,获得积分20
16秒前
18秒前
整齐醉冬完成签到,获得积分10
20秒前
jscr完成签到,获得积分10
21秒前
王先生完成签到,获得积分10
22秒前
科研工完成签到,获得积分10
22秒前
wmszhd完成签到,获得积分10
22秒前
修仙应助laola采纳,获得10
22秒前
流川枫发布了新的文献求助10
24秒前
快乐慕灵完成签到,获得积分10
24秒前
LIJIngcan完成签到 ,获得积分10
24秒前
Jenny应助再生极强的-涡虫采纳,获得10
25秒前
熬熬就出头了完成签到,获得积分10
25秒前
huangcx完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792