A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging

人类连接体项目 神经影像学 隐马尔可夫模型 动态功能连接 计算机科学 功能磁共振成像 连接体 功能连接 静息状态功能磁共振成像 人工智能 模式识别(心理学) 机器学习 神经科学 心理学
作者
Sana Hussain,Jason Langley,Aaron R. Seitz,Xiaoping Hu,Megan A. K. Peters
出处
期刊:Brain connectivity [Mary Ann Liebert]
卷期号:13 (3): 154-163 被引量:8
标识
DOI:10.1089/brain.2022.0031
摘要

Introduction: Hidden Markov models (HMMs) are a popular choice to extract and examine recurring patterns of activity or functional connectivity in neuroimaging data, both in terms of spatial patterns and their temporal progression. Although many diverse HMMs have been applied to neuroimaging data, most have defined states based on activity levels (intensity-based [IB] states) rather than patterns of functional connectivity between brain areas (connectivity-based states), which is problematic if we want to understand connectivity dynamics: IB states are unlikely to provide comprehensive information about dynamic connectivity patterns. Methods: We addressed this problem by introducing a new HMM that defines states based on full functional connectivity (FFC) profiles among brain regions. We empirically explored the behavior of this new model in comparison to existing approaches based on IB or summed functional connectivity states using the Human Connectome Project unrelated 100 functional magnetic resonance imaging "resting-state" dataset. Results: Our FFC model discovered connectivity states with more distinguishable (i.e., unique and separable from each other) patterns than previous approaches, and recovered simulated connectivity-based states more faithfully than the other models tested. Discussion: Thus, if our goal is to extract and interpret connectivity states in neuroimaging data, our new model outperforms previous methods, which miss crucial information about the evolution of functional connectivity in the brain. Hidden Markov models (HMMs) can be used to investigate brain states noninvasively. Previous models "recover" connectivity from intensity-based hidden states, or from connectivity "summed" across nodes. In this study, we introduce a novel connectivity-based HMM and show how it can reveal true connectivity hidden states under minimal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
afrex完成签到,获得积分10
3秒前
Lio发布了新的文献求助10
7秒前
小智0921完成签到,获得积分10
8秒前
妞妞叫小南完成签到,获得积分10
15秒前
Zz完成签到 ,获得积分10
17秒前
21秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
小马甲应助科研通管家采纳,获得10
23秒前
23秒前
rui应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
糟糕的颜完成签到 ,获得积分10
24秒前
wayne完成签到 ,获得积分10
29秒前
SciGPT应助程昱采纳,获得10
31秒前
34秒前
善学以致用应助cc采纳,获得10
37秒前
三方完成签到,获得积分10
38秒前
39秒前
李多意完成签到,获得积分10
39秒前
39秒前
huahua完成签到 ,获得积分10
41秒前
41秒前
Jasmineyfz完成签到 ,获得积分10
42秒前
求知小生完成签到 ,获得积分10
44秒前
程昱发布了新的文献求助10
45秒前
2022H发布了新的文献求助10
45秒前
48秒前
年轻真好啊完成签到,获得积分10
51秒前
cc发布了新的文献求助10
51秒前
从从余余完成签到 ,获得积分10
53秒前
科目三应助猪头采纳,获得10
57秒前
kaier完成签到 ,获得积分10
57秒前
LeeHx完成签到 ,获得积分10
58秒前
李子园完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503