A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging

人类连接体项目 神经影像学 隐马尔可夫模型 动态功能连接 计算机科学 功能磁共振成像 连接体 功能连接 静息状态功能磁共振成像 人工智能 模式识别(心理学) 机器学习 神经科学 心理学
作者
Sana Hussain,Jason Langley,Aaron R. Seitz,Xiaoping Hu,Megan A. K. Peters
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:13 (3): 154-163 被引量:8
标识
DOI:10.1089/brain.2022.0031
摘要

Introduction: Hidden Markov models (HMMs) are a popular choice to extract and examine recurring patterns of activity or functional connectivity in neuroimaging data, both in terms of spatial patterns and their temporal progression. Although many diverse HMMs have been applied to neuroimaging data, most have defined states based on activity levels (intensity-based [IB] states) rather than patterns of functional connectivity between brain areas (connectivity-based states), which is problematic if we want to understand connectivity dynamics: IB states are unlikely to provide comprehensive information about dynamic connectivity patterns. Methods: We addressed this problem by introducing a new HMM that defines states based on full functional connectivity (FFC) profiles among brain regions. We empirically explored the behavior of this new model in comparison to existing approaches based on IB or summed functional connectivity states using the Human Connectome Project unrelated 100 functional magnetic resonance imaging "resting-state" dataset. Results: Our FFC model discovered connectivity states with more distinguishable (i.e., unique and separable from each other) patterns than previous approaches, and recovered simulated connectivity-based states more faithfully than the other models tested. Discussion: Thus, if our goal is to extract and interpret connectivity states in neuroimaging data, our new model outperforms previous methods, which miss crucial information about the evolution of functional connectivity in the brain. Hidden Markov models (HMMs) can be used to investigate brain states noninvasively. Previous models "recover" connectivity from intensity-based hidden states, or from connectivity "summed" across nodes. In this study, we introduce a novel connectivity-based HMM and show how it can reveal true connectivity hidden states under minimal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liujiahao完成签到,获得积分10
1秒前
cxjie320完成签到,获得积分10
1秒前
黄油小熊完成签到,获得积分10
1秒前
李健应助璐瑶采纳,获得10
1秒前
2秒前
平常莹芝完成签到,获得积分10
3秒前
石唐浩关注了科研通微信公众号
3秒前
感动的小鸽子完成签到 ,获得积分10
3秒前
Dreamchaser应助Harley采纳,获得20
6秒前
6秒前
哦哦哦完成签到 ,获得积分10
7秒前
科研小虫完成签到,获得积分10
7秒前
月亮上的猫完成签到,获得积分10
7秒前
风中黎昕完成签到 ,获得积分10
7秒前
瘦瘦谷兰完成签到,获得积分10
7秒前
阿瑶完成签到,获得积分20
7秒前
曾经碧蓉完成签到,获得积分10
7秒前
共享精神应助zbzfp采纳,获得10
8秒前
危机的小丸子完成签到 ,获得积分10
8秒前
瓜兵是官爷完成签到,获得积分10
9秒前
冯宇完成签到,获得积分10
11秒前
天地一沙鸥完成签到 ,获得积分10
11秒前
科研通AI5应助JinGN采纳,获得10
12秒前
啦哈啦哈啦完成签到,获得积分10
12秒前
Shirly完成签到,获得积分10
13秒前
todo完成签到,获得积分10
14秒前
nicky完成签到 ,获得积分10
14秒前
天阳完成签到,获得积分10
14秒前
百事可乐完成签到,获得积分10
15秒前
浮游应助周8相见采纳,获得10
15秒前
16秒前
知了完成签到,获得积分10
16秒前
皑似山上雪完成签到,获得积分10
16秒前
5AGAME完成签到,获得积分10
16秒前
wxnice发布了新的文献求助20
18秒前
卡布达完成签到,获得积分10
18秒前
fanch1122完成签到,获得积分10
18秒前
小二郎应助阿瑶采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910842
求助须知:如何正确求助?哪些是违规求助? 4186455
关于积分的说明 12999825
捐赠科研通 3954044
什么是DOI,文献DOI怎么找? 2168261
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909