Thienothiophene‐Assisted Property Optimization for Dopant‐Free π‐Conjugation Polymeric Hole Transport Material Achieving Over 23% Efficiency in Perovskite Solar Cells

材料科学 掺杂剂 钙钛矿(结构) 电子迁移率 带隙 能量转换效率 光电子学 化学工程 纳米技术 兴奋剂 工程类
作者
Zhiqing Xie,Hyung‐Jin Park,SeungJu Choi,Ho‐Yeol Park,Thavamani Gokulnath,Hyerin Kim,Jeonghyun Kim,Hak‐Beom Kim,In Woo Choi,Yimhyun Jo,Dong Suk Kim,Young Yong Kim,Seog Young Yoon,Jinhwan Yoon,Yong‐Rae Cho,Sung‐Ho Jin
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (2) 被引量:22
标识
DOI:10.1002/aenm.202202680
摘要

Abstract Hole transport materials (HTMs) play essential roles in achieving high photovoltaic performance and long‐term stability in the n–i–p structure of perovskite solar cell (PSC) devices. Recently, dopant‐free polymeric materials as HTMs in PSCs have attracted considerable attention owing to high carrier mobility and excellent hydrophobicity. However, achieving similar efficiencies to those of doped small molecule HTMs such as Spiro‐OMeTAD is a big challenge. Herein, a thienothiophene π‐bridge is selected as a stabilizer and energy level regulator incorporated into a donor–acceptor‐type HTM to synthesize a new polymer, Nap‐SiBTA. The incorporation of the thienothiophene group improves the thermal stability and favors the high planarity and face‐on orientation, promoting high charge carrier mobility and tunable optical band gap. Finally, the dopant‐free polymer Nap‐SiBTA‐based PSC achieves an excellent power conversion efficiency (PCE) of 23.07% with a high fill factor of 80.85%. To the best of the authors’ knowledge, this is one of the best efficiencies in dopant‐free HTM PSCs. Moreover, the unencapsulated device retains 93% of its initial PCE after 1000 h owing to the excellent hydrophobicity of Nap‐SiBTA. This work provides a general and practical method to design dopant‐free HTMs for the high efficiency and long‐term stability of PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh发布了新的文献求助10
刚刚
1秒前
杨xy发布了新的文献求助10
1秒前
kingebo完成签到,获得积分10
3秒前
HAP发布了新的文献求助10
4秒前
4秒前
dablack发布了新的文献求助10
4秒前
ConnieSKY完成签到,获得积分10
5秒前
6秒前
青花发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
我是老大应助yzf采纳,获得10
10秒前
10秒前
陶醉发布了新的文献求助20
12秒前
lee给Jimmy_King的求助进行了留言
12秒前
12秒前
AGHHHH完成签到,获得积分20
13秒前
Ming完成签到,获得积分10
13秒前
14秒前
Ava应助焦焦采纳,获得10
15秒前
在水一方应助rortis采纳,获得10
15秒前
16秒前
青花完成签到,获得积分10
17秒前
123应助从容晓凡采纳,获得20
21秒前
猫丫发布了新的文献求助10
21秒前
yzf发布了新的文献求助10
23秒前
zdz完成签到,获得积分10
24秒前
ncwgx完成签到,获得积分10
25秒前
26秒前
26秒前
hony发布了新的文献求助10
29秒前
懒洋洋tzy发布了新的文献求助10
30秒前
领导范儿应助左惋庭采纳,获得10
31秒前
正直的彩虹完成签到,获得积分10
31秒前
33秒前
34秒前
36秒前
科研通AI2S应助huwenwen采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437