Signed graph representation learning for functional-to-structural brain network mapping

计算机科学 代表(政治) 图形 人工智能 特征学习 图论 透视图(图形) 机器学习 理论计算机科学 数学 组合数学 政治 政治学 法学
作者
Haoteng Tang,Lei Guo,Xiyao Fu,Yalin Wang,Scott Mackin,Olusola Ajilore,Alex Leow,Paul M. Thompson,Heng Huang,Liang Zhan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102674-102674 被引量:5
标识
DOI:10.1016/j.media.2022.102674
摘要

MRI-derived brain networks have been widely used to understand functional and structural interactions among brain regions, and factors that affect them, such as brain development and diseases. Graph mining on brain networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. Since brain functional and structural networks describe the brain topology from different perspectives, exploring a representation that combines these cross-modality brain networks has significant clinical implications. Most current studies aim to extract a fused representation by projecting the structural network to the functional counterpart. Since the functional network is dynamic and the structural network is static, mapping a static object to a dynamic object may not be optimal. However, mapping in the opposite direction (i.e., from functional to structural networks) are suffered from the challenges introduced by negative links within signed graphs. Here, we propose a novel graph learning framework, named as Deep Signed Brain Graph Mining or DSBGM, with a signed graph encoder that, from an opposite perspective, learns the cross-modality representations by projecting the functional network to the structural counterpart. We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets (HCP and OASIS). Our experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李李子完成签到,获得积分20
1秒前
1+1发布了新的文献求助10
1秒前
安详的断缘完成签到,获得积分10
2秒前
香蕉觅云应助Sun1c7采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
上官若男应助WWW采纳,获得10
4秒前
4秒前
5秒前
饺子发布了新的文献求助10
5秒前
狗十七发布了新的文献求助10
5秒前
5秒前
6秒前
HHYYAA发布了新的文献求助10
6秒前
6秒前
研究啥完成签到,获得积分10
6秒前
亮仔完成签到,获得积分10
6秒前
7秒前
7秒前
dorken发布了新的文献求助10
7秒前
8秒前
daker发布了新的文献求助10
9秒前
lzw发布了新的文献求助10
11秒前
Fxxkme发布了新的文献求助10
12秒前
12秒前
thynkz完成签到,获得积分10
12秒前
饺子完成签到,获得积分10
12秒前
Forest发布了新的文献求助10
13秒前
13秒前
干净的一手完成签到,获得积分20
13秒前
左白易发布了新的文献求助10
13秒前
qq小兵完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Migue应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587