Signed graph representation learning for functional-to-structural brain network mapping

计算机科学 代表(政治) 图形 人工智能 特征学习 图论 透视图(图形) 机器学习 理论计算机科学 数学 组合数学 政治 政治学 法学
作者
Haoteng Tang,Lei Guo,Xiyao Fu,Yalin Wang,Scott Mackin,Olusola Ajilore,Alex Leow,Paul M. Thompson,Heng Huang,Liang Zhan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:83: 102674-102674 被引量:5
标识
DOI:10.1016/j.media.2022.102674
摘要

MRI-derived brain networks have been widely used to understand functional and structural interactions among brain regions, and factors that affect them, such as brain development and diseases. Graph mining on brain networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. Since brain functional and structural networks describe the brain topology from different perspectives, exploring a representation that combines these cross-modality brain networks has significant clinical implications. Most current studies aim to extract a fused representation by projecting the structural network to the functional counterpart. Since the functional network is dynamic and the structural network is static, mapping a static object to a dynamic object may not be optimal. However, mapping in the opposite direction (i.e., from functional to structural networks) are suffered from the challenges introduced by negative links within signed graphs. Here, we propose a novel graph learning framework, named as Deep Signed Brain Graph Mining or DSBGM, with a signed graph encoder that, from an opposite perspective, learns the cross-modality representations by projecting the functional network to the structural counterpart. We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets (HCP and OASIS). Our experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助稀罕你采纳,获得10
刚刚
2秒前
Aries完成签到,获得积分10
4秒前
4秒前
Pretrial完成签到 ,获得积分10
4秒前
Jocelyn7发布了新的文献求助10
5秒前
wmmm发布了新的文献求助10
5秒前
余笙发布了新的文献求助10
6秒前
充电宝应助冷傲迎梦采纳,获得10
6秒前
彭于晏应助qi采纳,获得30
6秒前
科研通AI2S应助shor0414采纳,获得10
6秒前
ponyy发布了新的文献求助30
7秒前
秋之月发布了新的文献求助10
8秒前
skier发布了新的文献求助10
9秒前
balabala完成签到,获得积分20
9秒前
隐形曼青应助kb采纳,获得10
10秒前
yanyan发布了新的文献求助10
12秒前
繁笙完成签到 ,获得积分10
12秒前
12秒前
无言完成签到 ,获得积分10
12秒前
NONO完成签到 ,获得积分10
13秒前
星辰大海应助TT采纳,获得10
13秒前
15秒前
康康完成签到,获得积分10
15秒前
Xv完成签到,获得积分0
15秒前
18秒前
18秒前
香蕉觅云应助zfzf0422采纳,获得10
18秒前
19秒前
19秒前
李健应助爱听歌的向日葵采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
烟花应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得80
20秒前
所所应助科研通管家采纳,获得20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824