Phase-field modeling of crack growth and interaction in rock

聚结(物理) 成核 材料科学 裂缝闭合 岩土工程 应力场 地质学 机械 裂纹扩展阻力曲线 断裂力学 计算机模拟 结构工程 复合材料 工程类 有限元法 物理 天体生物学 热力学
作者
Xu Bin,Tao Xu,Yanchao Xue,Michael J. Heap,P.G. Ranjith,P.L.P. Wasantha,Zhiguo Li
出处
期刊:Geomechanics and geophysics for geo-energy and geo-resources [Springer Nature]
卷期号:8 (6) 被引量:15
标识
DOI:10.1007/s40948-022-00497-w
摘要

A better understanding of crack growth and interaction in rock is of great significance to investigate the mechanical properties of rock at a macroscopic scale. In the present paper, we present and implement a crack growth model into the phase field method (PFM) to investigate crack nucleation, growth, and interaction in rock. The PFM-based crack growth model is validated against constant strain rate tests on sandstone samples containing a single pre-existing inclined crack in which digital image correlation was used to monitor crack growth and deformation. The numerical failure patterns and stress–strain curves are in good agreement with the laboratory experimental results. The experimental and numerical results both demonstrate that the initiation position of the wing cracks changes from the middle to the tips of the pre-existing crack as the pre-existing crack inclination angle is increased. The numerical simulation results also show that the rock bridge ligament angle (β) exerts an important influence on crack interaction and the peak stress of sandstone containing two pre-existing cracks. Furthermore, three different types of crack coalescence (non-coalescence mode, inner-inner tips coalescence mode, and inner-outer tip coalescence mode) were observed at different rock bridge ligament angles. The extended PFM-based crack growth model presented in this paper helps to understand the complex fracture process of rock in an engineering geological environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JACK发布了新的文献求助10
刚刚
卿欣完成签到 ,获得积分10
1秒前
莉莉发布了新的文献求助10
1秒前
红烧茄子完成签到,获得积分10
1秒前
默默柚子完成签到,获得积分10
1秒前
nini完成签到 ,获得积分10
1秒前
陶醉海露完成签到,获得积分10
2秒前
2秒前
苗槐完成签到,获得积分10
2秒前
阳光的沉鱼完成签到,获得积分10
2秒前
大模型应助白华苍松采纳,获得10
3秒前
zyp应助火焰向上采纳,获得10
3秒前
3秒前
123456完成签到,获得积分10
3秒前
深情安青应助半颗橙子采纳,获得10
3秒前
CodeCraft应助123采纳,获得10
4秒前
隐形曼青应助心花怒放采纳,获得10
4秒前
酷酷的如天完成签到,获得积分10
4秒前
4秒前
常常完成签到,获得积分10
4秒前
4秒前
HH完成签到,获得积分10
4秒前
5秒前
5秒前
SandyH完成签到,获得积分10
5秒前
Jack完成签到,获得积分10
5秒前
白露完成签到 ,获得积分10
5秒前
Owen应助默默柚子采纳,获得10
6秒前
6秒前
隐形的易巧完成签到 ,获得积分10
6秒前
7秒前
Ava应助Autoimmune采纳,获得10
7秒前
科研通AI5应助多变的卡宾采纳,获得10
7秒前
Citrus发布了新的文献求助10
8秒前
科目三应助莉莉采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762