蔗糖
适应
碳纤维
化学
生物合成
植物
生物
食品科学
生物化学
材料科学
酶
复合数
复合材料
作者
Anastasia Kitashova,Stephan O. Adler,Andreas S. Richter,Svenja Eberlein,Dejan Dziubek,Edda Klipp,Thomas Nägele
摘要
Abstract Cold acclimation is a multigenic process by which many plant species increase their freezing tolerance. Stabilization of photosynthesis and carbohydrate metabolism plays a crucial role in cold acclimation. To study regulation of primary and secondary metabolism during cold acclimation of Arabidopsis thaliana , metabolic mutants with deficiencies in either starch or flavonoid metabolism were exposed to 4°C. Photosynthesis was determined together with amounts of carbohydrates, anthocyanins, organic acids and enzyme activities of the central carbohydrate metabolism. Starch deficiency was found to significantly delay soluble sugar accumulation during cold acclimation, while starch overaccumulation did not affect accumulation dynamics but resulted in lower total amounts of \sucrose and glucose. Anthocyanin amounts were lowered in both starch deficient and overaccumulating mutants. Vice versa, flavonoid deficiency did not result in a changed starch amount, which suggested a unidirectional signalling link between starch and flavonoid metabolism. Mathematical modelling of carbon metabolism indicated kinetics of sucrose biosynthesis to be limiting for carbon partitioning in leaf tissue during cold exposure. Together with cold‐induced dynamics of citrate, fumarate and malate amounts, this provided evidence for a central role of sucrose phosphate synthase activity in carbon partitioning between biosynthetic and dissimilatory pathways which stabilizes photosynthesis and metabolism at low temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI