Boosted crow search algorithm for handling multi-threshold image problems with application to X-ray images of COVID-19

直方图 计算机科学 阈值 人工智能 图像分割 稳健性(进化) 模式识别(心理学) 分割 算法 熵(时间箭头) 局部最优 灰度 图像(数学) 生物化学 化学 物理 量子力学 基因
作者
Songwei Zhao,Pengjun Wang,Ali Asghar Heidari,Xuehua Zhao,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119095-119095 被引量:27
标识
DOI:10.1016/j.eswa.2022.119095
摘要

COVID-19 is pervasive and threatens the safety of people around the world. Therefore, now, a method is needed to diagnose COVID-19 accurately. The identification of COVID-19 by X-ray images is a common method. The target area is extracted from the X-ray images by image segmentation to improve classification efficiency and help doctors make a diagnosis. In this paper, we propose an improved crow search algorithm (CSA) based on variable neighborhood descent (VND) and information exchange mutation (IEM) strategies, called VMCSA. The original CSA quickly falls into the local optimum, and the possibility of finding the best solution is significantly reduced. Therefore, to help the algorithm avoid falling into local optimality and improve the global search capability of the algorithm, we introduce VND and IEM into CSA. Comparative experiments are conducted at CEC2014 and CEC'21 to demonstrate the better performance of the proposed algorithm in optimization. We also apply the proposed algorithm to multi-level thresholding image segmentation using Renyi's entropy as the objective function to find the optimal threshold, where we construct 2-D histograms with grayscale images and non-local mean images and maximize the Renyi's entropy on top of the 2-D histogram. The proposed segmentation method is evaluated on X-ray images of COVID-19 and compared with some algorithms. VMCSA has a significant advantage in segmentation results and obtains better robustness than other algorithms. The available extra info can be found at https://github.com/1234zsw/VMCSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WZQ完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
mindoak完成签到,获得积分10
1秒前
小马甲应助小番茄采纳,获得10
1秒前
刘小天完成签到,获得积分10
2秒前
无风风发布了新的文献求助10
2秒前
镜燃完成签到 ,获得积分10
2秒前
2秒前
YC完成签到,获得积分10
2秒前
大模型应助圆脸的空间啊采纳,获得10
3秒前
什么局部云完成签到,获得积分10
3秒前
yznfly应助MikM采纳,获得50
3秒前
轻松小之发布了新的文献求助10
3秒前
4秒前
Super发布了新的文献求助10
5秒前
5秒前
YUUU关注了科研通微信公众号
5秒前
0713应助冰可乐采纳,获得10
5秒前
5秒前
科研通AI6应助Victoria采纳,获得20
6秒前
6秒前
7秒前
7秒前
活泼仙女完成签到,获得积分10
7秒前
Jasper应助Denmark采纳,获得10
7秒前
8秒前
humblelucas完成签到,获得积分10
9秒前
所所应助蓝天采纳,获得10
9秒前
科研通AI6应助蓝天采纳,获得10
10秒前
传奇3应助蓝天采纳,获得10
10秒前
orixero应助蓝天采纳,获得10
10秒前
Hello应助蓝天采纳,获得10
10秒前
科研通AI6应助蓝天采纳,获得10
10秒前
CodeCraft应助蓝天采纳,获得10
10秒前
ShellyMaya完成签到 ,获得积分10
10秒前
华仔应助蓝天采纳,获得10
10秒前
慕青应助蓝天采纳,获得10
10秒前
爆米花应助蓝天采纳,获得10
10秒前
隐形曼青应助勤恳寒安采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790