A Robust Framework for Object Detection in a Traffic Surveillance System

目标检测 计算机科学 帕斯卡(单位) 人工智能 模式识别(心理学) 深度学习 特征提取 对象(语法) 卷积神经网络 视觉对象识别的认知神经科学 特征(语言学) 基础(拓扑) 图层(电子) 计算机视觉 语言学 哲学 程序设计语言 数学分析 化学 数学 有机化学
作者
Malik Javed Akhtar,Rabbia Mahum,Faisal Shafique Butt,Rashid Amin,Ahmed M. El‐Sherbeeny,Seongkwan Mark Lee,Sarang Shaikh
出处
期刊:Electronics [MDPI AG]
卷期号:11 (21): 3425-3425 被引量:30
标识
DOI:10.3390/electronics11213425
摘要

Object recognition is the technique of specifying the location of various objects in images or videos. There exist numerous algorithms for the recognition of objects such as R-CNN, Fast R-CNN, Faster R-CNN, HOG, R-FCN, SSD, SSP-net, SVM, CNN, YOLO, etc., based on the techniques of machine learning and deep learning. Although these models have been employed for various types of object detection applications, however, tiny object detection faces the challenge of low precision. It is essential to develop a lightweight and robust model for object detection that can detect tiny objects with high precision. In this study, we suggest an enhanced YOLOv2 (You Only Look Once version 2) algorithm for object detection, i.e., vehicle detection and recognition in surveillance videos. We modified the base network of the YOLOv2 by reducing the number of parameters and replacing it with DenseNet. We employed the DenseNet-201 technique for feature extraction in our improved model that extracts the most representative features from the images. Moreover, our proposed model is more compact due to the dense architecture of the base network. We utilized DenseNet-201 as a base network due to the direct connection among all layers, which helps to extract a valuable information from the very first layer and pass it to the final layer. The dataset gathered from the Kaggle and KITTI was used for the training of the proposed model, and we cross-validated the performance using MS COCO and Pascal VOC datasets. To assess the efficacy of the proposed model, we utilized extensive experimentation, which demonstrates that our algorithm beats existing vehicle detection approaches, with an average precision of 97.51%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jnb发布了新的文献求助10
1秒前
whw发布了新的文献求助10
1秒前
WTX完成签到,获得积分10
1秒前
传奇3应助weixi4457采纳,获得10
2秒前
深情安青应助yqsf789采纳,获得10
2秒前
2秒前
hjq完成签到,获得积分10
3秒前
3秒前
称心的栗子完成签到 ,获得积分10
3秒前
核桃应助Promise采纳,获得10
3秒前
称心梦容发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
4秒前
洗衣液发布了新的文献求助10
4秒前
庭中踏雪来完成签到 ,获得积分10
4秒前
5秒前
II完成签到,获得积分10
6秒前
顾矜应助ppsparkling采纳,获得10
6秒前
6秒前
wy.he应助咳咳咳采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
隐形曼青应助blue采纳,获得10
7秒前
7秒前
7秒前
8秒前
567完成签到,获得积分20
8秒前
科研通AI6应助木鱼采纳,获得10
8秒前
晚若旧发布了新的文献求助10
8秒前
繁荣的若之完成签到 ,获得积分10
8秒前
8秒前
8秒前
我是我发布了新的文献求助80
9秒前
JamesPei应助外向的尔云采纳,获得30
9秒前
秀丽如松完成签到,获得积分20
9秒前
9秒前
华仔应助Tiliar采纳,获得10
9秒前
饱饱完成签到,获得积分20
10秒前
布丁完成签到 ,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182