A Robust Framework for Object Detection in a Traffic Surveillance System

目标检测 计算机科学 帕斯卡(单位) 人工智能 模式识别(心理学) 深度学习 特征提取 对象(语法) 卷积神经网络 视觉对象识别的认知神经科学 特征(语言学) 基础(拓扑) 图层(电子) 计算机视觉 语言学 哲学 程序设计语言 数学分析 化学 数学 有机化学
作者
Malik Javed Akhtar,Rabbia Mahum,Faisal Shafique Butt,Rashid Amin,Ahmed M. El‐Sherbeeny,Seongkwan Mark Lee,Sarang Shaikh
出处
期刊:Electronics [MDPI AG]
卷期号:11 (21): 3425-3425 被引量:30
标识
DOI:10.3390/electronics11213425
摘要

Object recognition is the technique of specifying the location of various objects in images or videos. There exist numerous algorithms for the recognition of objects such as R-CNN, Fast R-CNN, Faster R-CNN, HOG, R-FCN, SSD, SSP-net, SVM, CNN, YOLO, etc., based on the techniques of machine learning and deep learning. Although these models have been employed for various types of object detection applications, however, tiny object detection faces the challenge of low precision. It is essential to develop a lightweight and robust model for object detection that can detect tiny objects with high precision. In this study, we suggest an enhanced YOLOv2 (You Only Look Once version 2) algorithm for object detection, i.e., vehicle detection and recognition in surveillance videos. We modified the base network of the YOLOv2 by reducing the number of parameters and replacing it with DenseNet. We employed the DenseNet-201 technique for feature extraction in our improved model that extracts the most representative features from the images. Moreover, our proposed model is more compact due to the dense architecture of the base network. We utilized DenseNet-201 as a base network due to the direct connection among all layers, which helps to extract a valuable information from the very first layer and pass it to the final layer. The dataset gathered from the Kaggle and KITTI was used for the training of the proposed model, and we cross-validated the performance using MS COCO and Pascal VOC datasets. To assess the efficacy of the proposed model, we utilized extensive experimentation, which demonstrates that our algorithm beats existing vehicle detection approaches, with an average precision of 97.51%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助猫猫无敌采纳,获得10
刚刚
追寻奇迹完成签到 ,获得积分10
1秒前
房天川发布了新的文献求助20
1秒前
然然发布了新的文献求助20
2秒前
是玥玥啊完成签到,获得积分10
2秒前
3秒前
Tonson完成签到,获得积分10
4秒前
达分歧完成签到 ,获得积分10
5秒前
林林完成签到 ,获得积分10
5秒前
跳跃猫咪完成签到 ,获得积分10
5秒前
Ayin完成签到,获得积分10
5秒前
acuis发布了新的文献求助10
6秒前
NNi发布了新的文献求助10
6秒前
6秒前
6秒前
忐忑的果汁完成签到 ,获得积分10
7秒前
7秒前
8秒前
ieeat发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
端正小猫完成签到,获得积分10
9秒前
志摩001完成签到,获得积分10
9秒前
10秒前
九陌发布了新的文献求助10
10秒前
yuilcl完成签到,获得积分10
10秒前
12秒前
JYAQI关注了科研通微信公众号
12秒前
12秒前
cx应助佳佳528采纳,获得10
13秒前
yenom完成签到,获得积分10
13秒前
隐形曼青应助kailan采纳,获得10
13秒前
王第一发布了新的文献求助10
13秒前
月是故乡明完成签到,获得积分10
13秒前
14秒前
yuilcl发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
30完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400