BS-Join: A novel and efficient mixed batch-stream join method for spatiotemporal data management in Flink

计算机科学 可扩展性 加入 流式处理 连接(拓扑) 分布式计算 加速 数据流 数据库 并行计算 延迟(音频) 数学 电信 组合数学 程序设计语言
作者
Hangxu Ji,Jian Su,Yuhai Zhao,Gang Wu,Guoren Wang,George Y. Yuan
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:141: 67-80 被引量:1
标识
DOI:10.1016/j.future.2022.11.016
摘要

The new computing model, mixed batch-stream data processing, plays a crucial role in big spatiotemporal data managements. As the core of the above computing method, mixed batch-stream data join has high requirements on the throughput and latency due to the coexistence of two types of data sources. Apache Flink is the most suitable distributed system for mixed batch-stream data join, with lower latency than the join calculation model based on Hadoop and Spark, and it simulates remote real-time reading of batch data sources and completes join calculation with the DataStream API. However, as the degree of parallelism increases, frequent remote data reads will cause huge disk and communication pressure, thereby reducing the job efficiency and scalability. To make things trickier, the above effects are further amplified when simulating complex operations such as range joins. Aiming at the above difficulties and the characteristics of mixed batch-stream data join, a cache-based framework supporting mixed batch-stream join computing natively is proposed, which increases the search speed in the process of data join by building indexes in batch data sources. Meanwhile, for equijoin and range join, an optimization mechanism based on hotspot awareness and an optimization mechanism based on skip list are proposed respectively to further improve the job efficiency. In summary, the advantages of our work are highlighted as follows: (1) The proposed framework enables Flink to natively support mixed batch-stream data join, and can improve throughput by 5 times and speedup by 4 times; (2) The optimization mechanism based on hotspot awareness can further improve the efficiency of equijoin; (3) Compared with range queries by traditional Operators in Flink, the throughput can be increased by 6 times while the latency is reduced by 45%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王梽旭发布了新的文献求助10
1秒前
2秒前
烟花应助乔沃维奇采纳,获得10
3秒前
alwry完成签到,获得积分10
3秒前
麦子完成签到 ,获得积分10
4秒前
6秒前
无味完成签到,获得积分10
9秒前
10秒前
SYLH应助521采纳,获得10
13秒前
曹兆发布了新的文献求助10
15秒前
15秒前
16秒前
无语的断缘完成签到,获得积分10
17秒前
明杰完成签到,获得积分10
17秒前
田安平完成签到 ,获得积分10
17秒前
zeno123456完成签到,获得积分10
18秒前
梅溪湖的提词器完成签到,获得积分10
18秒前
nan完成签到,获得积分10
19秒前
21秒前
乔沃维奇发布了新的文献求助10
21秒前
22秒前
英姑应助快乐仙知采纳,获得10
23秒前
高大绝义完成签到,获得积分10
24秒前
24秒前
啊娴仔发布了新的文献求助10
25秒前
韩soso完成签到,获得积分10
27秒前
企鹅完成签到,获得积分10
28秒前
曹兆完成签到,获得积分10
30秒前
32秒前
jinboyuan应助曹兆采纳,获得10
35秒前
aa完成签到,获得积分10
37秒前
快乐仙知发布了新的文献求助10
38秒前
CipherSage应助CornellRong采纳,获得200
38秒前
11完成签到,获得积分10
40秒前
风铃鸟完成签到,获得积分10
43秒前
fd163c完成签到,获得积分10
44秒前
44秒前
hsx发布了新的文献求助30
45秒前
哈牛完成签到 ,获得积分10
45秒前
Lucas应助温婉的翎采纳,获得10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997