Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services

天然气 锅炉(水暖) 化石燃料 温室气体 工艺工程 缩小 能源消耗 环境友好型 废物管理 计算机科学 工程类 环境科学 环境经济学 生物 电气工程 经济 程序设计语言 生态学
作者
Georgios I. Tsoumalis,Zafeirios N. Bampos,Georgios V. Chatzis,Pandelis N. Biskas
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (22): 8461-8461 被引量:12
标识
DOI:10.3390/en15228461
摘要

Natural gas is a fossil fuel that has been widely used for various purposes, including residential and industrial applications. The combustion of natural gas, despite being more environmentally friendly than other fossil fuels such as petroleum, yields significant amounts of greenhouse gas emissions. Therefore, the optimization of natural gas consumption is a vital process in order to ensure that emission targets are met worldwide. Regarding residential consumption, advancements in terms of boiler technology, such as the usage of condensing boilers, have played a significant role in moving towards this direction. On top of that, the emergence of technologies such as smart homes, Internet of Things, and artificial intelligence provides opportunities for the development of automated optimization solutions, which can utilize data acquired from the boiler and various sensors in real-time, implement consumption forecasting methodologies, and accordingly provide control instructions in order to ensure optimal boiler functionality. Apart from energy consumption minimization, manual and automated optimization solutions can be utilized for balancing purposes, including natural gas demand response, which has not been sufficiently covered in the existing literature, despite its potential for the gas balancing market. Despite the existence of few research works and solutions regarding pure gas DR, the concept of an integrated demand response has been more widely researched, with the existing literature displaying promising results from the co-optimization of natural gas along with other energy sources, such as electricity and heat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PatrickWu发布了新的文献求助10
刚刚
1秒前
lxp发布了新的文献求助10
1秒前
1秒前
小牛马发布了新的文献求助10
2秒前
2秒前
钠离子完成签到,获得积分10
2秒前
Lucas应助Xiang Li采纳,获得10
3秒前
3秒前
wency完成签到,获得积分10
3秒前
6115完成签到,获得积分20
4秒前
FCL完成签到,获得积分10
5秒前
深情安青应助坚定平卉采纳,获得30
5秒前
5秒前
5秒前
wyq发布了新的文献求助10
6秒前
6秒前
orixero应助Pursue_ME采纳,获得10
7秒前
7秒前
俏皮沛柔发布了新的文献求助10
8秒前
8秒前
完美世界应助lxp采纳,获得10
9秒前
10秒前
10秒前
雷德发布了新的文献求助10
10秒前
铛铛发布了新的文献求助10
10秒前
11秒前
可爱的函函应助钠离子采纳,获得10
11秒前
承乐发布了新的文献求助10
11秒前
易安完成签到,获得积分10
12秒前
kiwi发布了新的文献求助10
13秒前
大学生发布了新的文献求助10
13秒前
荒野发布了新的文献求助10
13秒前
个性梦曼完成签到,获得积分10
14秒前
14秒前
勤劳怜寒发布了新的文献求助10
15秒前
Wacky发布了新的文献求助10
15秒前
单薄的静丹完成签到,获得积分10
15秒前
spinning完成签到,获得积分10
16秒前
科研小破白菜完成签到,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735018
求助须知:如何正确求助?哪些是违规求助? 3278902
关于积分的说明 10012243
捐赠科研通 2995542
什么是DOI,文献DOI怎么找? 1643492
邀请新用户注册赠送积分活动 781270
科研通“疑难数据库(出版商)”最低求助积分说明 749338