Revisiting crowd counting: State-of-the-art, trends, and future perspectives

计算机科学 水准点(测量) 管道(软件) 人工智能 分类 数据科学 分类 机器学习 深度学习 资源(消歧) 情报检索 计算机网络 大地测量学 程序设计语言 地理
作者
Muhammad Asif Khan,Hamid Menouar,Ridha Hamila
出处
期刊:Image and Vision Computing [Elsevier]
卷期号:129: 104597-104597 被引量:37
标识
DOI:10.1016/j.imavis.2022.104597
摘要

Crowd counting is an effective tool for situational awareness in public places. Automated crowd counting using images and videos is an interesting yet challenging problem that has gained significant attention in computer vision. Over the past few years, various deep learning methods have been developed to achieve state-of-the-art performance. The methods evolved over time vary in many aspects such as model architecture, input pipeline, learning paradigm, computational complexity, and accuracy gains etc. In this paper, we present a systematic and comprehensive review of the most significant contributions in the area of crowd counting. Although few surveys exist on the topic, our survey is most up-to date and different in several aspects. First, it provides a more meaningful categorization of the most significant contributions by model architectures, learning methods (i.e., loss functions), and evaluation methods (i.e., evaluation metrics). We chose prominent and distinct works and excluded similar works. We also sort the well-known crowd counting models by their performance over benchmark datasets. We believe that this survey can be a good resource for novice researchers to understand the progressive developments and contributions over time and the current state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呆驴遛娃完成签到,获得积分10
2秒前
奋斗绿旋完成签到,获得积分10
2秒前
2秒前
ticky完成签到,获得积分20
3秒前
miketyson完成签到,获得积分10
4秒前
4秒前
Guowei完成签到,获得积分10
4秒前
充电宝应助文静三颜采纳,获得30
5秒前
5秒前
6秒前
良辰应助火火采纳,获得10
7秒前
累累的完成签到 ,获得积分10
7秒前
86400完成签到,获得积分10
7秒前
8秒前
ticky发布了新的文献求助10
8秒前
9秒前
顷梦完成签到,获得积分10
9秒前
fwm发布了新的文献求助10
9秒前
香蕉觅云应助秋林采纳,获得30
10秒前
Yifan2024应助86400采纳,获得50
10秒前
兼听则明应助点点采纳,获得30
11秒前
猪猪hero应助2424采纳,获得10
11秒前
12秒前
xiaaa完成签到,获得积分10
12秒前
sakyadamo发布了新的文献求助10
13秒前
小样发布了新的文献求助10
13秒前
13秒前
猪猪hero应助蜂蜜采纳,获得10
13秒前
深情安青应助Z1070741749采纳,获得30
13秒前
14秒前
自觉南风完成签到,获得积分10
15秒前
白白完成签到,获得积分20
16秒前
hmfyl发布了新的文献求助10
16秒前
乐观寻雪发布了新的文献求助10
16秒前
文哲发布了新的文献求助10
17秒前
小马甲应助ma采纳,获得10
17秒前
上官若男应助归海海亦采纳,获得50
18秒前
19秒前
21秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464787
求助须知:如何正确求助?哪些是违规求助? 3058139
关于积分的说明 9059880
捐赠科研通 2748354
什么是DOI,文献DOI怎么找? 1507839
科研通“疑难数据库(出版商)”最低求助积分说明 696733
邀请新用户注册赠送积分活动 696362