表征(材料科学)
卷积神经网络
塑料废料
光谱学
红外线的
红外光谱学
计算机科学
工艺工程
吞吐量
环境科学
人工智能
材料科学
纳米技术
废物管理
化学
工程类
光学
电信
有机化学
物理
无线
量子力学
作者
Fei Long,Shengli Jiang,Adeyinka Gbenga Adekunle,Víctor M. Zavala,Ezra Bar‐Ziv
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2022-11-18
卷期号:10 (48): 16064-16069
被引量:8
标识
DOI:10.1021/acssuschemeng.2c06052
摘要
To recycle the mixed plastic wastes (MPW), it is important to obtain the compositional information online in real time. We present a sensing framework based on a convolutional neural network (CNN) and mid-infrared spectroscopy (MIR) for the rapid and accurate characterization of MPW. The MPW samples are placed on a moving platform to mimic the industrial environment. The MIR spectra are collected at the rate of 100 Hz, and the proposed CNN architecture can reach an overall prediction accuracy close to 100%. Therefore, the proposed method paves the way toward the online MPW characterization in industrial applications where high throughput is needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI