Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ASH发布了新的文献求助10
2秒前
852应助如意代秋采纳,获得10
3秒前
祝愿发布了新的文献求助10
3秒前
6秒前
6秒前
daoyi完成签到,获得积分10
7秒前
7秒前
8秒前
11秒前
flow完成签到,获得积分10
12秒前
123gg发布了新的文献求助10
12秒前
zong2807完成签到,获得积分10
13秒前
阿菜完成签到,获得积分10
13秒前
泥嚎发布了新的文献求助10
14秒前
16秒前
tuanheqi应助研友_LXjjOZ采纳,获得150
16秒前
酷波er应助北北采纳,获得10
19秒前
田様应助CHRIS采纳,获得10
19秒前
小焦儿完成签到,获得积分10
20秒前
万能图书馆应助坚定白风采纳,获得10
20秒前
丘比特应助小任性采纳,获得10
20秒前
所所应助liziqi采纳,获得10
21秒前
雪白的夏山完成签到,获得积分10
28秒前
失眠的广山完成签到 ,获得积分10
28秒前
33秒前
34秒前
星辰大海应助大喵采纳,获得10
36秒前
37秒前
38秒前
38秒前
keyantong发布了新的文献求助10
38秒前
薛妖怪发布了新的文献求助10
38秒前
小任性发布了新的文献求助10
39秒前
南瓜饼完成签到,获得积分10
40秒前
漂亮白枫发布了新的文献求助10
41秒前
zhxq发布了新的文献求助10
42秒前
42秒前
rhei发布了新的文献求助30
43秒前
45秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190