亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
爱心完成签到 ,获得积分10
17秒前
Marciu33发布了新的文献求助10
50秒前
1分钟前
yinlao完成签到,获得积分10
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
mashibeo完成签到,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
蓝色条纹衫完成签到 ,获得积分10
2分钟前
Marciu33发布了新的文献求助10
3分钟前
单薄沐夏完成签到 ,获得积分10
3分钟前
4分钟前
yoyo233完成签到,获得积分10
4分钟前
所所应助yoyo233采纳,获得10
4分钟前
邓权完成签到,获得积分10
4分钟前
在水一方应助米娅喵采纳,获得10
4分钟前
4分钟前
huodian4发布了新的文献求助10
5分钟前
别具一格完成签到 ,获得积分10
5分钟前
大个应助huodian4采纳,获得10
5分钟前
6分钟前
6分钟前
7分钟前
科研通AI2S应助迷人尔蓝采纳,获得10
7分钟前
8分钟前
深情安青应助科研通管家采纳,获得10
8分钟前
JamesPei应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
牟白容发布了新的文献求助10
8分钟前
huodian4发布了新的文献求助10
8分钟前
牟白容完成签到,获得积分10
8分钟前
鸮纛完成签到,获得积分10
9分钟前
huodian4完成签到,获得积分10
9分钟前
PEITON发布了新的文献求助10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298727
求助须知:如何正确求助?哪些是违规求助? 2933738
关于积分的说明 8464755
捐赠科研通 2606845
什么是DOI,文献DOI怎么找? 1423451
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645188