Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
yio发布了新的文献求助10
1秒前
快乐的小乌龟完成签到,获得积分10
3秒前
4秒前
极品男大完成签到,获得积分10
4秒前
StevenCai完成签到,获得积分10
4秒前
夹心发布了新的文献求助10
5秒前
白雪皑皑完成签到 ,获得积分10
5秒前
在水一方应助ln177采纳,获得10
5秒前
bangbangbnag完成签到,获得积分10
7秒前
7秒前
李健的小迷弟应助萌酱采纳,获得10
7秒前
panpanh发布了新的文献求助10
8秒前
8秒前
开放的可仁完成签到,获得积分10
8秒前
平常的毛豆应助非洲饿龟采纳,获得30
9秒前
9秒前
bai完成签到,获得积分10
10秒前
Jasper应助喜悦的丹亦采纳,获得10
10秒前
11秒前
11秒前
11秒前
dox关闭了dox文献求助
11秒前
乔治韦斯莱完成签到 ,获得积分10
13秒前
Jasper应助轩辕十四采纳,获得30
13秒前
乔123发布了新的文献求助10
14秒前
ZZZZ完成签到,获得积分10
16秒前
夹心完成签到,获得积分10
16秒前
16秒前
16秒前
黑大帅完成签到,获得积分10
16秒前
热情的骁完成签到,获得积分20
17秒前
闪闪山水发布了新的文献求助10
17秒前
萌酱完成签到,获得积分10
17秒前
欠虐宝宝发布了新的文献求助10
18秒前
元元元yuan完成签到,获得积分10
19秒前
yang完成签到,获得积分10
19秒前
一一发布了新的文献求助10
21秒前
烟花应助无心的易槐采纳,获得10
21秒前
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970