清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王洋洋完成签到 ,获得积分10
4秒前
zzf关闭了zzf文献求助
11秒前
JamesPei应助ceeray23采纳,获得30
11秒前
cc完成签到,获得积分10
13秒前
宝贝完成签到 ,获得积分10
42秒前
科目三应助dingding采纳,获得10
44秒前
57秒前
研友_Y59785应助常有李采纳,获得10
58秒前
zhdjj完成签到 ,获得积分10
59秒前
CC发布了新的文献求助10
1分钟前
Davidjin完成签到,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
natsu401完成签到 ,获得积分10
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
perfect完成签到 ,获得积分10
2分钟前
星辰大海应助常有李采纳,获得20
2分钟前
2分钟前
神勇的天问完成签到 ,获得积分10
2分钟前
阿狸完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助30
2分钟前
喜悦的鬼神完成签到 ,获得积分10
2分钟前
水晶李完成签到 ,获得积分10
2分钟前
清脆钧关注了科研通微信公众号
3分钟前
Destiny完成签到,获得积分10
3分钟前
仙女完成签到 ,获得积分10
3分钟前
南风完成签到,获得积分10
3分钟前
常有李完成签到,获得积分10
3分钟前
秋思冬念完成签到 ,获得积分10
3分钟前
南北完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
畅快的刚完成签到,获得积分10
3分钟前
文献蚂蚁完成签到,获得积分10
3分钟前
BMG完成签到,获得积分10
3分钟前
朝夕之晖完成签到,获得积分10
3分钟前
CGBIO完成签到,获得积分10
3分钟前
zzf完成签到,获得积分10
3分钟前
冷傲半邪完成签到,获得积分10
4分钟前
4分钟前
曾经不言完成签到 ,获得积分10
4分钟前
刘闹闹完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990732
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256570
捐赠科研通 3271081
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234