亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network

卷积(计算机科学) 计算机科学 人工智能 计算机视觉 人工神经网络
作者
Lakshmi Prasanna Kothala,Prathiba Jonnala,Sitaramanjaneya Reddy Guntur
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104378-104378 被引量:14
标识
DOI:10.1016/j.bspc.2022.104378
摘要

• Mixed ICH is a serious health disease, so an efficient light-weight multi-scale YOLO-GCB architecture is given for the localization of each hemorrhage in the given CT. • A novel mosaic training method is used to boost the performance by creating a greater number of mixed hemorrhage cases than in the original dataset. • Additional developments of ghost convolution and C3 ghost modules improves the speed by reducing the number of computations. • Memory required to deploy the proposed model either in cloud or in embedded devices is less by comparing with the other state-of-the-art existing models by producing similar results with respect to other metrics. • Finally, the mixed hemorrhages problem is eliminated by predicting a bounding box around each hemorrhage along with a class name and confidence score. Intracranial hemorrhage (ICH) is a serious medical condition that must be diagnosed in a stipulated time through computed tomography (CT) imaging modality. However, the neurologist must initially confirm the specific type of hemorrhage to prescribe an effective treatment. Although conventional image processing and convolution-based deep learning models can effectively perform multiclass classification tasks, they fail to classify if a CT input image contains multiple hemorrhages in a single slice and takes a lot of time to make the final predictions. To overcome these two difficulties, we proposed a novel YOLOv5x-GCB model that can be able to detect multiple hemorrhages with limited resources by employing a ghost convolution process. The advantage of ghost convolution is that it produces the same number of feature maps as vanilla convolution while using less expensive linear operations. Another feature of the proposed model is that it uses the mosaic augmentation technique throughout the training to improve the accuracy of mixed hemorrhage detection. A brain hemorrhage extended dataset containing 21,132 slices from 205 positive patients was used in training and validating the proposed model. To test the robustness of the proposed model, we created a separate dataset with the existing segmentation data, which are available in PhysioNet. As a result, the proposed model achieved an overall precision, recall, F1- score, and mean average precision of 92.1%, 88.9%, 90%, and 93.1%, respectively. In addition to these metrics, other parameters were used in evaluating the proposed model and checking its lightweight capability in terms of memory size and computational time. Results showed that our proposed model can be used in real-time clinical diagnosis by using either embedded devices or cloud services.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力的妙菡完成签到,获得积分10
4秒前
11秒前
12秒前
周三发布了新的文献求助10
18秒前
Cmqq发布了新的文献求助10
19秒前
在水一方应助Cmqq采纳,获得10
34秒前
周三完成签到 ,获得积分10
40秒前
su完成签到 ,获得积分10
44秒前
白羽丫完成签到,获得积分10
48秒前
充电宝应助苏幕遮采纳,获得10
49秒前
51秒前
55秒前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
zzzllove完成签到 ,获得积分10
1分钟前
nhzz2023完成签到 ,获得积分0
1分钟前
1分钟前
可爱的函函应助喜宝采纳,获得10
1分钟前
追寻的纸鹤完成签到 ,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
小二郎应助Cmqq采纳,获得10
1分钟前
123321完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
淡淡依白完成签到 ,获得积分10
1分钟前
ktw完成签到,获得积分10
1分钟前
1分钟前
小福星饼干完成签到 ,获得积分10
1分钟前
wangyue完成签到 ,获得积分10
1分钟前
喜宝发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
夜雨完成签到,获得积分10
2分钟前
小马甲应助小新采纳,获得10
2分钟前
喜宝完成签到,获得积分20
2分钟前
小小科研牛马完成签到 ,获得积分10
2分钟前
深情安青应助爱笑的大开采纳,获得10
2分钟前
FashionBoy应助喜宝采纳,获得10
2分钟前
2分钟前
兮兮完成签到 ,获得积分10
2分钟前
小橙子完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599726
求助须知:如何正确求助?哪些是违规求助? 4685467
关于积分的说明 14838489
捐赠科研通 4670150
什么是DOI,文献DOI怎么找? 2538175
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898