Machine Learning Accelerated Discovery of Promising Thermal Energy Storage Materials with High Heat Capacity

材料科学 储能 热能储存 热的 工艺工程 工程物理 热力学 工程类 功率(物理) 物理
作者
Joshua Ojih,Uche Onyekpe,Alejandro Rodriguez,Jianjun Hu,Chengxiao Peng,Ming Hu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (38): 43277-43289 被引量:15
标识
DOI:10.1021/acsami.2c11350
摘要

Thermal energy storage offers numerous benefits by reducing energy consumption and promoting the use of renewable energy sources. Thermal energy storage materials have been investigated for many decades with the aim of improving the overall efficiency of energy systems. However, finding solid materials that meet the requirement of high heat capacity has been a grand challenge for material scientists. Herewith, by training various machine learning models on 3377 high-quality data from full density functional theory (DFT) calculations, we efficiently search for potential materials with high heat capacity. We build four traditional machine learning models and two graph neural network models. Cross-comparison of the prediction performance and model accuracy was conducted among different models. The deeperGATGNN model exhibits high prediction accuracy and is used for predicting the heat capacity of 32,026 structures screened from the open quantum material database. We gain deep insight into the correlation between heat capacity and structure descriptors such as space group, prototype, lattice volume, atomic weight, etc. Twenty-two structures were predicted to possess high heat capacity, and the results were further validated with DFT calculations. We also identified one special structure, namely, MnIn2Se4, with space group no. 227 (Fd3̅m), that exhibits extremely high heat capacity, even higher than that of the Dulong-Petit limit at room temperature. This study paves the way for accelerating the discovery of novel thermal energy storage materials by combining machine learning with minimal DFT inquiry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mhm发布了新的文献求助10
2秒前
2秒前
ssm完成签到,获得积分10
5秒前
5秒前
zzj发布了新的文献求助10
5秒前
内向的台灯完成签到,获得积分20
5秒前
犹豫梦旋完成签到,获得积分10
6秒前
霸气紫文应助义气山水采纳,获得30
8秒前
9秒前
何博洋完成签到,获得积分10
11秒前
12秒前
丘比特应助阿娟儿采纳,获得10
13秒前
Outsider完成签到,获得积分10
13秒前
科研通AI2S应助Evan采纳,获得10
14秒前
鱼咬羊发布了新的文献求助10
14秒前
王烨完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助娜娜采纳,获得10
15秒前
16秒前
飞星发布了新的文献求助10
16秒前
Abby完成签到 ,获得积分10
17秒前
科研通AI2S应助loser采纳,获得10
18秒前
伊坂完成签到 ,获得积分10
19秒前
满意怜翠发布了新的文献求助10
20秒前
zzz完成签到,获得积分10
21秒前
21秒前
YoYo发布了新的文献求助30
22秒前
阿娟儿完成签到,获得积分20
24秒前
25秒前
背后水池发布了新的文献求助10
26秒前
打打应助xuezhao采纳,获得10
26秒前
27秒前
27秒前
领导范儿应助辉0721采纳,获得10
29秒前
娜娜发布了新的文献求助10
29秒前
29秒前
jiangjiang完成签到,获得积分10
29秒前
29秒前
阡陌完成签到,获得积分10
30秒前
31秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255