Machine Learning Accelerated Discovery of Promising Thermal Energy Storage Materials with High Heat Capacity

材料科学 储能 热能储存 热的 工艺工程 工程物理 热力学 工程类 功率(物理) 物理
作者
Joshua Ojih,Uche Onyekpe,Alejandro Rodriguez,Jianjun Hu,Chengxiao Peng,Ming Hu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (38): 43277-43289 被引量:15
标识
DOI:10.1021/acsami.2c11350
摘要

Thermal energy storage offers numerous benefits by reducing energy consumption and promoting the use of renewable energy sources. Thermal energy storage materials have been investigated for many decades with the aim of improving the overall efficiency of energy systems. However, finding solid materials that meet the requirement of high heat capacity has been a grand challenge for material scientists. Herewith, by training various machine learning models on 3377 high-quality data from full density functional theory (DFT) calculations, we efficiently search for potential materials with high heat capacity. We build four traditional machine learning models and two graph neural network models. Cross-comparison of the prediction performance and model accuracy was conducted among different models. The deeperGATGNN model exhibits high prediction accuracy and is used for predicting the heat capacity of 32,026 structures screened from the open quantum material database. We gain deep insight into the correlation between heat capacity and structure descriptors such as space group, prototype, lattice volume, atomic weight, etc. Twenty-two structures were predicted to possess high heat capacity, and the results were further validated with DFT calculations. We also identified one special structure, namely, MnIn2Se4, with space group no. 227 (Fd3̅m), that exhibits extremely high heat capacity, even higher than that of the Dulong-Petit limit at room temperature. This study paves the way for accelerating the discovery of novel thermal energy storage materials by combining machine learning with minimal DFT inquiry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
豆豆完成签到,获得积分10
4秒前
慕青应助ll采纳,获得10
4秒前
一水禾桉发布了新的文献求助10
5秒前
5秒前
sandra完成签到 ,获得积分10
5秒前
7秒前
Kekela1739发布了新的文献求助10
7秒前
笑一笑发布了新的文献求助10
9秒前
小二郎应助尔池采纳,获得10
12秒前
飞竹天寻发布了新的文献求助10
12秒前
13秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
小蘑菇应助无能的狂怒2号采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
gfi完成签到,获得积分10
16秒前
阿飞完成签到,获得积分10
17秒前
17秒前
萋萋发布了新的文献求助10
19秒前
21秒前
ll发布了新的文献求助10
21秒前
斯文败类应助花卷采纳,获得10
21秒前
22秒前
老阎应助尔池采纳,获得30
23秒前
sunrise发布了新的文献求助10
24秒前
王磊发布了新的文献求助10
25秒前
崽崽崽崽崽崽崽完成签到,获得积分10
25秒前
苏卿发布了新的文献求助10
27秒前
尊敬代亦完成签到,获得积分20
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080