Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
炫酷皮皮天完成签到,获得积分10
刚刚
orixero应助实验一定顺采纳,获得30
刚刚
1秒前
pipi完成签到,获得积分10
1秒前
XiaoDai完成签到,获得积分10
1秒前
共享精神应助YMY采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助dakjdia采纳,获得10
1秒前
wuxunxun2015发布了新的文献求助10
2秒前
黄队的橄榄完成签到,获得积分10
2秒前
2秒前
3秒前
慕灵完成签到,获得积分10
3秒前
Darling发布了新的文献求助10
3秒前
寻珍完成签到,获得积分10
3秒前
wdsdfkl发布了新的文献求助10
3秒前
3秒前
3秒前
小蘑菇应助guojingjing采纳,获得10
4秒前
Mint完成签到,获得积分10
4秒前
wes5566发布了新的文献求助10
4秒前
4秒前
Sober发布了新的文献求助10
4秒前
调皮的败发布了新的文献求助10
4秒前
Crazyeggy发布了新的文献求助10
4秒前
云朵发布了新的文献求助10
5秒前
小二郎应助JLLLLLLLL采纳,获得10
5秒前
凡凡发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
ww完成签到,获得积分10
8秒前
DreamMaker发布了新的文献求助10
8秒前
知常完成签到,获得积分10
8秒前
whynot发布了新的文献求助10
8秒前
Akim应助猪猪hero采纳,获得10
8秒前
领导范儿应助dvd采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768541
求助须知:如何正确求助?哪些是违规求助? 5575952
关于积分的说明 15418837
捐赠科研通 4902390
什么是DOI,文献DOI怎么找? 2637698
邀请新用户注册赠送积分活动 1585676
关于科研通互助平台的介绍 1540794