Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pgjwl完成签到 ,获得积分10
刚刚
iufan发布了新的文献求助10
刚刚
慕青应助烂漫大地采纳,获得10
刚刚
灵犀完成签到,获得积分10
1秒前
晨霜完成签到,获得积分10
1秒前
Xtals应助经竺采纳,获得10
1秒前
单薄水壶应助sherry221采纳,获得10
1秒前
悦动完成签到,获得积分10
2秒前
Bottle完成签到,获得积分10
3秒前
4秒前
4秒前
Aaa_12012完成签到,获得积分10
4秒前
豆子完成签到,获得积分10
5秒前
Zeger116完成签到,获得积分10
5秒前
5秒前
xyqnb完成签到,获得积分10
5秒前
6秒前
6秒前
dingxy1009完成签到,获得积分10
6秒前
十七完成签到,获得积分10
6秒前
Lucas应助一氧化碳采纳,获得10
7秒前
KSung完成签到 ,获得积分10
7秒前
搞怪藏今完成签到 ,获得积分10
8秒前
tudousi完成签到 ,获得积分10
8秒前
zhikaiyici完成签到 ,获得积分10
8秒前
叶子完成签到,获得积分10
9秒前
科研小能手完成签到,获得积分10
9秒前
LILI完成签到,获得积分10
9秒前
11秒前
ldjldj_2004完成签到 ,获得积分10
11秒前
11秒前
Owen应助时尚的雅柏采纳,获得10
11秒前
12秒前
12秒前
哈哈哈哈完成签到,获得积分10
12秒前
13秒前
悠旷发布了新的文献求助10
13秒前
李健应助宁静致远采纳,获得10
13秒前
voice完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792