Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHY发布了新的文献求助10
刚刚
刚刚
科目三应助奋斗迎波采纳,获得10
刚刚
无敌猫饭发布了新的文献求助10
1秒前
泥娃娃完成签到,获得积分10
1秒前
徐包包发布了新的文献求助100
1秒前
英姑应助朴西西采纳,获得10
2秒前
2秒前
阿强完成签到,获得积分10
2秒前
愉情完成签到,获得积分10
3秒前
4秒前
吴亚博完成签到,获得积分10
4秒前
徐凤年发布了新的文献求助10
4秒前
xinran_lv完成签到,获得积分10
5秒前
6秒前
cdhuang完成签到 ,获得积分10
6秒前
hygge完成签到,获得积分10
7秒前
初秋发布了新的文献求助10
7秒前
7秒前
隐形曼青应助独特的追命采纳,获得20
8秒前
云yu完成签到,获得积分10
8秒前
兰天关注了科研通微信公众号
9秒前
浮游应助李俊枫采纳,获得10
10秒前
不系之舟发布了新的文献求助10
10秒前
11秒前
FashionBoy应助ee采纳,获得10
11秒前
11秒前
12秒前
希望天下0贩的0应助lmn采纳,获得20
13秒前
EinZwei应助小蘑菇采纳,获得50
13秒前
韦娜完成签到,获得积分10
13秒前
wz完成签到,获得积分10
14秒前
15秒前
bkagyin应助不喜采纳,获得10
16秒前
完美世界应助Alces采纳,获得10
19秒前
务实大雁完成签到,获得积分10
19秒前
19秒前
帅气小刺猬完成签到,获得积分10
19秒前
YE发布了新的文献求助10
20秒前
汤柏钧完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798