Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
wang完成签到,获得积分10
3秒前
Jzhang应助Yimim采纳,获得10
4秒前
沐风发布了新的文献求助20
5秒前
汉关发布了新的文献求助10
7秒前
7秒前
葶儿完成签到,获得积分10
7秒前
安详中蓝完成签到 ,获得积分10
8秒前
呆萌士晋发布了新的文献求助10
8秒前
8秒前
10秒前
呆头发布了新的文献求助10
12秒前
若水发布了新的文献求助200
13秒前
13秒前
14秒前
子川发布了新的文献求助10
14秒前
大头娃娃没下巴完成签到,获得积分10
16秒前
liyuchen完成签到,获得积分10
16秒前
CipherSage应助Lxxx_7采纳,获得10
17秒前
烟花应助永远少年采纳,获得10
17秒前
meng发布了新的文献求助10
19秒前
科研通AI5应助贪吃的猴子采纳,获得10
21秒前
21秒前
可爱的彩虹完成签到,获得积分10
21秒前
小确幸完成签到,获得积分10
21秒前
彭于晏应助毛毛虫采纳,获得10
22秒前
LilyChen完成签到 ,获得积分10
22秒前
Owen应助Su采纳,获得10
22秒前
22秒前
22秒前
23秒前
24秒前
yyyy关注了科研通微信公众号
24秒前
Jane完成签到 ,获得积分10
25秒前
25秒前
25秒前
kento发布了新的文献求助30
25秒前
Akim应助balzacsun采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824