Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taco发布了新的文献求助10
刚刚
米兰完成签到,获得积分10
1秒前
renxuda发布了新的文献求助10
2秒前
4秒前
4秒前
4秒前
4秒前
大苹果完成签到,获得积分10
4秒前
yy发布了新的文献求助10
5秒前
跳跃的邪欢完成签到,获得积分10
5秒前
6秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
阿呆盘阿瓜完成签到,获得积分10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI5应助嘻嘻哈哈采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得30
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
李闻闻发布了新的文献求助10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
万能图书馆应助幽默白竹采纳,获得10
9秒前
9秒前
jingzh发布了新的文献求助10
9秒前
antinomy完成签到,获得积分10
10秒前
taco完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI6应助Tch王采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192262
求助须知:如何正确求助?哪些是违规求助? 4375259
关于积分的说明 13624367
捐赠科研通 4229578
什么是DOI,文献DOI怎么找? 2320065
邀请新用户注册赠送积分活动 1318422
关于科研通互助平台的介绍 1268650