Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助古德方采纳,获得10
刚刚
健壮凡桃发布了新的文献求助10
2秒前
若杉发布了新的文献求助10
2秒前
CipherSage应助贪玩绮山采纳,获得10
2秒前
3秒前
cs完成签到,获得积分10
3秒前
3秒前
3秒前
Shannon发布了新的文献求助10
4秒前
sun完成签到,获得积分10
4秒前
yzm完成签到,获得积分10
4秒前
4秒前
zhhua完成签到,获得积分10
5秒前
红豆521完成签到,获得积分20
5秒前
5秒前
在水一方应助曾蕙茹采纳,获得10
6秒前
细心的日记本完成签到,获得积分10
7秒前
浅苏完成签到,获得积分10
7秒前
Orange应助小宋采纳,获得10
7秒前
xff完成签到 ,获得积分10
7秒前
曾经不言发布了新的文献求助10
8秒前
8秒前
缓慢的书蕾关注了科研通微信公众号
8秒前
8秒前
8秒前
scz发布了新的文献求助10
8秒前
Islet发布了新的文献求助10
9秒前
9秒前
9秒前
情怀应助糟糕的铁锤采纳,获得10
10秒前
tingalan应助若杉采纳,获得10
10秒前
汉堡包应助红豆521采纳,获得10
10秒前
10秒前
Meron发布了新的文献求助10
10秒前
善学以致用应助吃肉璇璇采纳,获得10
11秒前
杨羕发布了新的文献求助10
11秒前
积极灵寒完成签到 ,获得积分20
12秒前
12秒前
12秒前
君打豆发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784462
求助须知:如何正确求助?哪些是违规求助? 5682526
关于积分的说明 15464250
捐赠科研通 4913580
什么是DOI,文献DOI怎么找? 2644772
邀请新用户注册赠送积分活动 1592662
关于科研通互助平台的介绍 1547148