Intermetallic particle heterogeneity controls shear localization in high-strength nanostructured Al alloys

金属间化合物 材料科学 纳米晶材料 晶界 冶金 微观结构 粒度 复合材料 碳化物 剪切带 剪切(地质) 合金 纳米技术
作者
Tianjiao Lei,Esther C. Hessong,Jungho Shin,Daniel S. Gianola,Timothy J. Rupert
出处
期刊:Acta Materialia [Elsevier]
卷期号:240: 118347-118347 被引量:5
标识
DOI:10.1016/j.actamat.2022.118347
摘要

The mechanical behavior of two nanocrystalline Al alloys, Al-Mg-Y and Al-Fe-Y, is investigated with in-situ micropillar compression testing. Both alloys were strengthened by a hierarchical microstructure including grain boundary segregation, nanometer-thick amorphous complexions, carbide nanorod precipitates with sizes of a few nanometers, and submicron-scale intermetallic particles. The maximum yield strength of the Al-Mg-Y system was measured to be 950 MPa, exceeding that of the Al-Fe-Y system (680 MPa), primarily due to a combination of more carbide nanorods and more amorphous complexions. Both alloys exhibited yield strengths much higher than those of commercial Al alloys, and therefore have great potential for structural applications. However, some micropillar specimens were observed to plastically soften through shear banding. Post-mortem investigation revealed that intermetallic-free deformation pathways of a few micrometers in length were responsible for this failure. Further characterization showed significant grain growth within the shear band. The coarsened grains maintained the same orientation with each other, pointing to grain boundary mechanisms for plastic flow, specifically grain rotation and/or grain boundary migration. The presence of intermetallic particles made it difficult for both matrix and intermetallic grains to rotate into the same orientation due to the different lattice parameters and slip systems. Therefore, we are able to conclude that a uniform distribution of intermetallic particles with an average spacing less than the percolation length of shear localization can effectively prevent the maturation of shear bands, offering a design strategy for high-strength nanocrystalline Al alloys with both high strength and stable plastic flow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助wp采纳,获得10
刚刚
1秒前
yungu完成签到,获得积分10
1秒前
1秒前
1秒前
shin完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Yxs发布了新的文献求助10
1秒前
汉堡包应助笑一笑采纳,获得10
2秒前
史尔美完成签到,获得积分10
2秒前
jingyu发布了新的文献求助10
2秒前
1111111111应助xiao采纳,获得10
2秒前
赵某人完成签到,获得积分10
2秒前
CipherSage应助彩色的云采纳,获得10
2秒前
Cynthia完成签到,获得积分10
3秒前
鳗鱼绿蝶完成签到,获得积分10
3秒前
自由的松发布了新的文献求助10
4秒前
1111发布了新的文献求助10
4秒前
只只发布了新的文献求助10
4秒前
CodeCraft应助啊撒网大大e采纳,获得10
4秒前
陶醉白梅发布了新的文献求助10
5秒前
Tanya发布了新的文献求助10
5秒前
333发布了新的文献求助10
5秒前
YONG完成签到,获得积分10
6秒前
6秒前
lucid发布了新的文献求助10
6秒前
一支蕉发布了新的文献求助10
7秒前
激情的乌龟完成签到,获得积分10
7秒前
科研疯狂者完成签到,获得积分10
7秒前
科研废人完成签到,获得积分10
7秒前
糖不太甜完成签到,获得积分10
7秒前
八九发布了新的文献求助10
8秒前
9秒前
9秒前
ldhylm完成签到,获得积分10
10秒前
10秒前
大方听白完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648