Novel biomarkers identifying hypertrophic cardiomyopathy and its obstructive variant based on targeted amino acid metabolomics

代谢组学 接收机工作特性 肥厚性心肌病 谷氨酰胺 医学 氨基酸 心肌病 胆碱 蛋氨酸 丝氨酸 心脏病学 生物信息学 内科学 生物化学 化学 生物 心力衰竭
作者
Lei Guo,Bo Wang,Fuyang Zhang,Chao Gao,Guangyu Hu,Mengyao Zhou,Rutao Wang,Hang Zhao,Wenjun Yan,Ling Zhang,Zhiling Ma,Yang Weiping,Xiong Guo,Chong Huang,Zhe Cui,Fangfang Sun,Dandan Song,Liwen Liu,Ling Tao
出处
期刊:Chinese Medical Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:135 (16): 1952-1961 被引量:1
标识
DOI:10.1097/cm9.0000000000002279
摘要

Abstract Background: Hypertrophic cardiomyopathy (HCM) is an underdiagnosed genetic heart disease worldwide. The management and prognosis of obstructive HCM (HOCM) and non-obstructive HCM (HNCM) are quite different, but it also remains challenging to discriminate these two subtypes. HCM is characterized by dysmetabolism, and myocardial amino acid (AA) metabolism is robustly changed. The present study aimed to delineate plasma AA and derivatives profiles, and identify potential biomarkers for HCM. Methods: Plasma samples from 166 participants, including 57 cases of HOCM, 52 cases of HNCM, and 57 normal controls (NCs), who first visited the International Cooperation Center for HCM, Xijing Hospital between December 2019 and September 2020, were collected and analyzed by high-performance liquid chromatography–mass spectrometry based on targeted AA metabolomics. Three separate classification algorithms, including random forest, support vector machine, and logistic regression, were applied for the identification of specific AA and derivatives compositions for HCM and the development of screening models to discriminate HCM from NC as well as HOCM from HNCM. Results: The univariate analysis showed that the serine, glycine, proline, citrulline, glutamine, cystine, creatinine, cysteine, choline, and aminoadipic acid levels in the HCM group were significantly different from those in the NC group. Four AAs and derivatives (Panel A; proline, glycine, cysteine, and choline) were screened out by multiple feature selection algorithms for discriminating HCM patients from NCs. The receiver operating characteristic (ROC) analysis in Panel A yielded an area under the ROC curve (AUC) of 0.83 (0.75–0.91) in the training set and 0.79 (0.65–0.94) in the validation set. Moreover, among 10 AAs and derivatives (arginine, phenylalanine, tyrosine, proline, alanine, asparagine, creatine, tryptophan, ornithine, and choline) with statistical significance between HOCM and HNCM, 3 AAs (Panel B; arginine, proline, and ornithine) were selected to differentiate the two subgroups. The AUC values in the training and validation sets for Panel B were 0.83 (0.74–0.93) and 0.82 (0.66–0.98), respectively. Conclusions: The plasma AA and derivatives profiles were distinct between the HCM and NC groups. Based on the differential profiles, the two established screening models have potential value in assisting HCM screening and identifying whether it is obstructive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默纲完成签到,获得积分10
刚刚
1秒前
福娃选手发布了新的文献求助10
2秒前
华仔应助小giao吃不饱采纳,获得10
3秒前
4秒前
Li发布了新的文献求助10
4秒前
PengHu发布了新的文献求助30
5秒前
南冥完成签到 ,获得积分10
6秒前
苏卿应助111采纳,获得10
7秒前
我是老大应助文艺南松采纳,获得10
8秒前
活泼新儿发布了新的文献求助10
8秒前
11秒前
ppp关注了科研通微信公众号
12秒前
冷静映安完成签到,获得积分10
12秒前
13秒前
竹斟酒完成签到,获得积分10
15秒前
嘎嘎坤完成签到 ,获得积分10
16秒前
信封里的太阳完成签到 ,获得积分10
16秒前
苗条盼山完成签到,获得积分10
18秒前
农夫完成签到,获得积分10
18秒前
大个应助闫伊森采纳,获得10
20秒前
21秒前
红泥小火炉完成签到,获得积分10
21秒前
Aaernan完成签到 ,获得积分10
21秒前
华仔应助老街采纳,获得10
23秒前
Nothing发布了新的文献求助10
24秒前
杨大强完成签到,获得积分20
27秒前
28秒前
科研通AI2S应助yulong采纳,获得10
30秒前
淡定的梦岚完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
SciGPT应助WCX采纳,获得10
33秒前
34秒前
直率的心情完成签到,获得积分10
34秒前
36秒前
闫伊森发布了新的文献求助10
37秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133522
求助须知:如何正确求助?哪些是违规求助? 2784556
关于积分的说明 7767520
捐赠科研通 2439740
什么是DOI,文献DOI怎么找? 1297013
科研通“疑难数据库(出版商)”最低求助积分说明 624827
版权声明 600791