A new sorting algorithm-based merging weighted fraction Monte Carlo method for solving the population balance equation for particle coagulation dynamics

蒙特卡罗方法 分数(化学) 人口 数学 算法 常量(计算机编程) 分类 数学优化 应用数学 计算机科学 统计 社会学 人口学 有机化学 化学 程序设计语言
作者
Fei Wang,Tat Leung Chan
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald (MCB UP)]
卷期号:33 (2): 881-911 被引量:1
标识
DOI:10.1108/hff-06-2022-0378
摘要

Purpose The purpose of this study is to present a newly proposed and developed sorting algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method for solving the population balance equation for the weighted fraction coagulation process in aerosol dynamics with high computational accuracy and efficiency. Design/methodology/approach In the new SAMWFMC method, the jump Markov process is constructed as the weighted fraction Monte Carlo (WFMC) method (Jiang and Chan, 2021) with a fraction function. Both adjustable and constant fraction functions are used to validate the computational accuracy and efficiency. A new merging scheme is also proposed to ensure a constant-number and constant-volume scheme. Findings The new SAMWFMC method is fully validated by comparing with existing analytical solutions for six benchmark test cases. The numerical results obtained from the SAMWFMC method with both adjustable and constant fraction functions show excellent agreement with the analytical solutions and low stochastic errors. Compared with the WFMC method (Jiang and Chan, 2021), the SAMWFMC method can significantly reduce the stochastic error in the total particle number concentration without increasing the stochastic errors in high-order moments of the particle size distribution at only slightly higher computational cost. Originality/value The WFMC method (Jiang and Chan, 2021) has a stringent restriction on the fraction functions, making few fraction functions applicable to the WFMC method except for several specifically selected adjustable fraction functions, while the stochastic error in the total particle number concentration is considerably large. The newly developed SAMWFMC method shows significant improvement and advantage in dealing with weighted fraction coagulation process in aerosol dynamics and provides an excellent potential to deal with various fraction functions with higher computational accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蜂蜜完成签到,获得积分10
刚刚
蓝桉完成签到 ,获得积分10
1秒前
张景灿完成签到,获得积分10
1秒前
蘇q完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
nous完成签到,获得积分10
4秒前
11完成签到,获得积分10
5秒前
西西完成签到,获得积分10
5秒前
5秒前
Wang_ZiMo发布了新的文献求助10
6秒前
海绵宝宝的做饭铲完成签到,获得积分10
6秒前
6秒前
yuuka发布了新的文献求助10
7秒前
Wang驳回了李健应助
7秒前
微笑笑卉发布了新的文献求助10
8秒前
科研通AI6应助狂野大雄鹰采纳,获得10
10秒前
zwangxia完成签到,获得积分10
11秒前
12秒前
Xuz完成签到 ,获得积分10
13秒前
谢123完成签到 ,获得积分10
13秒前
13秒前
hahage完成签到,获得积分10
15秒前
15秒前
Akim应助科研通管家采纳,获得10
15秒前
tcf应助科研通管家采纳,获得10
15秒前
源源完成签到 ,获得积分10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得30
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
natmed应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
无花果应助paz_1010采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188