A Geometry-Constrained Deformable Attention Network for Aortic Segmentation

分割 计算机科学 人工智能 背景(考古学) 相似性(几何) 主动脉 模式识别(心理学) 计算机视觉 Sørensen–骰子系数 图像分割 图像(数学) 医学 古生物学 心脏病学 生物
作者
W.H. Lin,Hui Liu,Lin Gu,Zhifan Gao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 287-296 被引量:1
标识
DOI:10.1007/978-3-031-16443-9_28
摘要

Morphological segmentation of the aorta is significant for aortic diagnosis, intervention, and prognosis. However, it is difficult for existing methods to achieve the continuity of spatial information and the integrity of morphological extraction, due to the gradually variable and irregular geometry of the aorta in the long-sequence computed tomography (CT). In this paper, we propose a geometry-constrained deformable attention network (GDAN) to learn the aortic common features through interaction with context information of the anatomical space. The deformable attention extractor in our model can adaptively adjust the position and the size of patches to match different shapes of the aorta. The self-attention mechanism is also helpful to explore the long-range dependency in CT sequences and capture more semantic features. The geometry-constrained guider simplifies the morphological representation with a high spatial similarity. The guider imposes strong constraints on geometric boundaries, which changes the sensitivity of gradually variable aortic morphology in the network. Guider can assist the correct extraction of semantic features combining deformable attention extractor. In 204 cases of aortic CT dataset, including 42 normal aorta, 45 coarctation of the aorta, and 107 aortic dissection, our method obtained a mean dice similarity coefficient of 0.943 on the test set (20%), outperforming 6 state-of-the-art methods about aortic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助科研通管家采纳,获得10
刚刚
归尘应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
在水一方应助大胆绮兰采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
doug完成签到,获得积分0
1秒前
归尘应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助CY采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
归尘应助科研通管家采纳,获得10
2秒前
归尘应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
wlp鹏完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
heniancheng完成签到 ,获得积分10
3秒前
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286