Service Caching for Meteorological Emergency Decision-making in Cloud-Edge Computing

作者
Hanzhi Yan,Xiaolong Xu,Fei Dai,Lianyong Qi,Xuyun Zhang,Wanchun Dou
标识
DOI:10.1109/icws55610.2022.00032
摘要

The Intelligent Meteorological System (IMS) with cloud computing (CC) provides users with various meteorological services, but the long-distance communication of CC often brings high latency, which makes the IMS perform poorly in the series of real-time services for meteorological emergency decision-making. Considering the shortcomings of CC, edge computing is adopted to the IMS to process most service requests. In the IMS with cloud-edge computing, the commonly used contents of services is cached on edge servers (ESs) to reduce resource scheduling, thus avoiding high time costs. Due to the storage and computing resource limitations of ESs, the massive types of services and the changing service requests, how to determine the caching contents is still a challenge. In this paper, a service caching scheme based on deep reinforcement learning, named SCDR, is proposed. Specifically, a service caching framework for IMS with cloud-edge computing is designed. Then, the distributed distributional deep deterministic policy gradient (D4PG) is leveraged to realize the optimization of the service caching strategy with the highest service coverage rate and low processing latency. Besides, the performance of the generated caching strategy is evaluated through simulation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
世间安得双全法完成签到,获得积分0
1秒前
2秒前
nan完成签到,获得积分10
3秒前
4秒前
hkh发布了新的文献求助10
4秒前
天天快乐应助小美爱科研采纳,获得10
5秒前
5秒前
BIGDUCK发布了新的文献求助10
7秒前
韦恩完成签到,获得积分20
7秒前
赘婿应助Su采纳,获得10
8秒前
9秒前
9秒前
进击的娇娇完成签到,获得积分10
10秒前
11秒前
潮哈哈耶发布了新的文献求助30
11秒前
温婉的镜子完成签到,获得积分20
11秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Grayball应助科研通管家采纳,获得10
12秒前
劲秉应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
13秒前
SICHEN应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
美好乐松应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
美好乐松应助科研通管家采纳,获得10
13秒前
SICHEN应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
8R60d8应助科研通管家采纳,获得80
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672729
求助须知:如何正确求助?哪些是违规求助? 3228865
关于积分的说明 9782382
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610797
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199