Corn starch dispersions (CSD) were hydrolyzed with citric acid and compared with CSD co-treated with citric acid combined with ultrasonication for 1 to 18 days, which are designated as single modification (CSD-SM) and dual modification (CSD-DM), respectively. The logistic functions monitor the dynamics of the hydrolysis advance (%) of the CSD-SM and CSD-DM as a function of time, where the zones most vulnerable to the single-treatment and/or co-treatment of the corn starch granules (CSG) are the amorphous or disordered regions. The characterization results of CSD-DM suggest that the structural changes caused by dual modification affected the morphology, sequence, and microstructure of the CSG. The heterogeneous changes caused by the dual modification changed the configuration of the CSG, generating a kind of destemming of the amorphous lamellae (depolymerization), an increase in the percentage of relative crystallinity of the CSD-DM and an active rearrangement of the intralamellar chains that promoted the relative amount of double helix for 18 days of double modification. The synergistic effect of the dual modification for CSD by the sequential combination of a chemical treatment followed by a physical one improved the hydrolyzed advance by 12 %, the relative crystallinity by 10 %, and the promotion of double helices by 25 % during 18 days of co-treatment.