Structural basis for the transformation of the traditional medicine berberine by bacterial nitroreductase

化学 立体化学 辅因子 晶体结构 氢化物 活动站点 结晶学 生物化学 有机化学 金属
作者
Haiying Wen,Li-Bin Pan,Shurong Ma,Xinyu Yang,Jia-Chun Hu,Hai-Fan Zhao,Zengqiang Gao,Yuhui Dong,Yan Wang,H. Zhang
标识
DOI:10.1107/s2059798322008373
摘要

The bacterial nitroreductases (NRs) NfsB and NfsA are conserved homodimeric FMN-dependent flavoproteins that are responsible for the reduction of nitroaromatic substrates. Berberine (BBR) is a plant-derived isoquinoline alkaloid with a large conjugated ring system that is widely used in the treatment of various diseases. It was recently found that the gut microbiota convert BBR into dihydroberberine (dhBBR, the absorbable form) mediated by bacterial NRs. The molecular basis for the transformation of BBR by the gut microbiota remains unclear. Here, kinetic studies showed that NfsB from Escherichia coli (EcNfsB), rather than EcNfsA, is responsible for the conversion of BBR to dhBBR in spite of a low reaction rate. The crystal structure of the EcNfsB-BBR complex showed that BBR binds into the active pocket at the dimer interface, and its large conjugated plane stacks above the plane of the FMN cofactor in a nearly parallel orientation. BBR is mainly stabilized by π-stacking interactions with both neighboring aromatic residues and FMN. Structure-based mutagenesis studies further revealed that the highly conserved Phe70 and Phe199 are important residues for the conversion of BBR. The structure revealed that the C6 atom of BBR (which receives the hydride) is ∼7.5 Å from the N5 atom of FMN (which donates the hydride), which is too distant for hydride transfer. Notably, several well ordered water molecules make hydrogen-bond/van der Waals contacts with the N1 atom of BBR in the active site, which probably donate protons in conjunction with electron transfer from FMN. The structure-function studies revealed the mechanism for the recognition and binding of BBR by bacterial NRs and may help to understand the conversion of BBR by the gut microbiota.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
格格星发布了新的文献求助10
1秒前
1秒前
ding应助Autoimmune采纳,获得10
1秒前
mmyhn发布了新的文献求助10
3秒前
Ava应助友好初夏采纳,获得10
4秒前
明天发布了新的文献求助20
5秒前
缓慢的枫叶应助ytolll采纳,获得20
6秒前
自信天发布了新的文献求助10
6秒前
科研通AI2S应助彩色采纳,获得10
6秒前
八九发布了新的文献求助10
6秒前
zhchong5完成签到,获得积分10
7秒前
顾矜应助人间枝头采纳,获得10
7秒前
CipherSage应助顾易采纳,获得10
8秒前
10秒前
友好初夏完成签到,获得积分20
10秒前
kkk完成签到,获得积分10
10秒前
11秒前
生信人完成签到 ,获得积分10
11秒前
小二郎应助翔子采纳,获得10
11秒前
Neroar发布了新的文献求助10
12秒前
100完成签到,获得积分10
12秒前
隐形曼青应助mmyhn采纳,获得10
12秒前
yoyo呦呦完成签到,获得积分10
13秒前
Ava应助寒来暑往采纳,获得10
14秒前
haowu发布了新的文献求助10
14秒前
龙行天下发布了新的文献求助10
15秒前
小马甲应助cyy1226采纳,获得10
16秒前
16秒前
17秒前
17秒前
za完成签到 ,获得积分10
17秒前
17秒前
迷路的采枫完成签到,获得积分10
18秒前
18秒前
18秒前
Junkie完成签到,获得积分10
19秒前
jamieaspirin关注了科研通微信公众号
19秒前
19秒前
Autoimmune完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119025
求助须知:如何正确求助?哪些是违规求助? 2769335
关于积分的说明 7700759
捐赠科研通 2424765
什么是DOI,文献DOI怎么找? 1287886
科研通“疑难数据库(出版商)”最低求助积分说明 620698
版权声明 599962