Structural basis for the transformation of the traditional medicine berberine by bacterial nitroreductase

化学 立体化学 辅因子 晶体结构 氢化物 活动站点 结晶学 生物化学 有机化学 金属
作者
Haiying Wen,Li-Bin Pan,Shurong Ma,Xinyu Yang,Jia-Chun Hu,Hai-Fan Zhao,Zengqiang Gao,Yuhui Dong,Yan Wang,H. Zhang
标识
DOI:10.1107/s2059798322008373
摘要

The bacterial nitroreductases (NRs) NfsB and NfsA are conserved homodimeric FMN-dependent flavoproteins that are responsible for the reduction of nitroaromatic substrates. Berberine (BBR) is a plant-derived isoquinoline alkaloid with a large conjugated ring system that is widely used in the treatment of various diseases. It was recently found that the gut microbiota convert BBR into dihydroberberine (dhBBR, the absorbable form) mediated by bacterial NRs. The molecular basis for the transformation of BBR by the gut microbiota remains unclear. Here, kinetic studies showed that NfsB from Escherichia coli (EcNfsB), rather than EcNfsA, is responsible for the conversion of BBR to dhBBR in spite of a low reaction rate. The crystal structure of the EcNfsB-BBR complex showed that BBR binds into the active pocket at the dimer interface, and its large conjugated plane stacks above the plane of the FMN cofactor in a nearly parallel orientation. BBR is mainly stabilized by π-stacking interactions with both neighboring aromatic residues and FMN. Structure-based mutagenesis studies further revealed that the highly conserved Phe70 and Phe199 are important residues for the conversion of BBR. The structure revealed that the C6 atom of BBR (which receives the hydride) is ∼7.5 Å from the N5 atom of FMN (which donates the hydride), which is too distant for hydride transfer. Notably, several well ordered water molecules make hydrogen-bond/van der Waals contacts with the N1 atom of BBR in the active site, which probably donate protons in conjunction with electron transfer from FMN. The structure-function studies revealed the mechanism for the recognition and binding of BBR by bacterial NRs and may help to understand the conversion of BBR by the gut microbiota.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜完成签到,获得积分10
刚刚
chillin完成签到 ,获得积分10
1秒前
大壮完成签到,获得积分10
1秒前
1秒前
七七发布了新的文献求助10
1秒前
tu完成签到,获得积分20
1秒前
江任意西完成签到 ,获得积分10
2秒前
2秒前
陈椅子的求学完成签到,获得积分10
2秒前
赘婿应助mcsmdxs采纳,获得10
2秒前
鉴定为寄完成签到,获得积分20
2秒前
FLY完成签到,获得积分10
3秒前
岁月轮回发布了新的文献求助10
3秒前
sakiecon完成签到,获得积分10
3秒前
omo完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助10
4秒前
4秒前
华仔应助留胡子的青柏采纳,获得10
4秒前
4秒前
建丰完成签到,获得积分10
5秒前
5秒前
乐乐应助宗笑晴采纳,获得10
5秒前
拼搏太英完成签到,获得积分10
5秒前
6秒前
susu发布了新的文献求助200
6秒前
8秒前
loveyouxkkt应助韦老虎采纳,获得30
8秒前
小蘑菇应助含糊采纳,获得10
9秒前
深情安青应助狂野觅云采纳,获得10
9秒前
鉴定为寄发布了新的文献求助30
10秒前
夜白举报无奈的浩宇求助涉嫌违规
10秒前
10秒前
11秒前
跳跃尔容发布了新的文献求助10
11秒前
青山发布了新的文献求助26
11秒前
11秒前
Agernon应助韦老虎采纳,获得10
12秒前
沉默沛岚发布了新的文献求助30
12秒前
12秒前
程程发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762