Computed Tomography-based Radiomics Evaluation of Postoperative Local Recurrence of Pancreatic Ductal Adenocarcinoma

列线图 医学 接收机工作特性 胰腺导管腺癌 放射科 无线电技术 队列 曲线下面积 鉴别诊断 胰腺癌 内科学 病理 癌症
作者
Ming He,Xinyue Chen,Michael Wels,Félix Lades,Yatong Li,Zaiyi Liu,Zhengyu Jin,Huadan Xue
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (4): 680-688 被引量:5
标识
DOI:10.1016/j.acra.2022.05.019
摘要

To develop and validate an effective model for identifying patients with postoperative local disease recurrence of pancreatic ductal adenocarcinoma (PDAC).A total of 153 patients who had undergone surgical resection of PDAC with regular postoperative follow-up were consecutively enrolled and randomly divided into training (n = 108) and validation (n = 45) cohorts. The postoperative soft-tissue biopsy results or clinical follow-up results served as the reference diagnostic criteria. Radiomics analysis of the postoperative soft-tissue was performed on a commercially available prototype software using portal vein phase image. Three models were built to characterize postoperative soft tissue: computed tomography (CT)-based radiomics, clinicoradiological, and their combination. The area under the receiver operating characteristic curves (AUC) was used to evaluate the differential diagnostic performance. A nomogram was used to select the final model with best performance. One radiologist's diagnostic choices that were made with and without the nomogram's assistance were evaluated.A seven-feature-combined radiomics signature was constructed as a predictor of postoperative local recurrence. The nomogram model combining the radiomics signature with postoperative CA 19-9 elevation showed the best performance (training cohort, AUC = 0.791 [95%CI: 0.707, 0.876]; validation cohort, AUC = 0.742 [95%CI: 0.590, 0.894]). In the validation cohort, the AUC for differential diagnosis was significantly improved for the combined model relative to that for postoperative CA 19-9 elevation (AUC = 0.742 vs. 0.533, p < 0.001). The calibration curve and decision curve analysis demonstrated the clinical usefulness of the proposed nomogram. The diagnostic performance of the radiologist was not significantly improve by using the proposed nomogram (AUC = 0.742 vs. 0.670, p = 0.17).The combined model using CT radiomic features and CA 19-9 elevation effectively characterized postoperative soft tissue and potentially may improve treatment strategies and facilitate personalized treatment for PDAC after surgical resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
赘婿应助mrmrer采纳,获得10
1秒前
1秒前
赘婿应助三九采纳,获得10
1秒前
2秒前
2秒前
GEeZiii发布了新的文献求助10
2秒前
2秒前
7777777发布了新的文献求助10
2秒前
研友_nv2r4n发布了新的文献求助10
2秒前
Bman完成签到,获得积分10
3秒前
sakurai应助愤怒的寄琴采纳,获得10
3秒前
迟大猫应助简单的银耳汤采纳,获得10
3秒前
Owen应助LJL采纳,获得10
3秒前
4秒前
cwn完成签到,获得积分10
4秒前
zhuzhu完成签到,获得积分0
4秒前
丘比特应助彩色的蓝天采纳,获得10
4秒前
ChoccyPasta完成签到,获得积分10
5秒前
5秒前
感动的冬云完成签到,获得积分10
5秒前
嘤嘤嘤发布了新的文献求助10
6秒前
wuhaixia完成签到,获得积分10
6秒前
正版DY完成签到,获得积分10
6秒前
333发布了新的文献求助10
6秒前
醒醒发布了新的文献求助10
6秒前
xfxx发布了新的文献求助10
7秒前
Sissi完成签到 ,获得积分10
7秒前
校长完成签到,获得积分20
7秒前
尼亚吉拉完成签到,获得积分10
7秒前
7秒前
布布发布了新的文献求助10
7秒前
Zhang发布了新的文献求助10
8秒前
qinqin发布了新的文献求助10
9秒前
顾夏包发布了新的文献求助30
9秒前
钰宁发布了新的文献求助10
9秒前
NexusExplorer应助ZZZ采纳,获得10
10秒前
11秒前
顺心书琴完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794