亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Neural Networks: Foundation, Frontiers and Applications

深度学习 计算机科学 人工神经网络 图形 人工智能 机器学习 理论计算机科学 数据科学
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Xiaojie Guo
标识
DOI:10.1145/3534678.3542609
摘要

The field of graph neural networks (GNNs) has seen rapid and incredible strides over the recent years. Graph neural networks, also known as deep learning on graphs, graph representation learning, or geometric deep learning, have become one of the fastest-growing research topics in machine learning, especially deep learning. This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including recommendation systems, computer vision, natural language processing, inductive logic programming, program synthesis, software mining, automated planning, cybersecurity, and intelligent transportation. However, as the field rapidly grows, it has been extremely challenging to gain a global perspective of the developments of GNNs. Therefore, we feel the urgency to bridge the above gap and have a comprehensive tutorial on this fast-growing yet challenging topic. This tutorial of Graph Neural Networks (GNNs): Foundation, Frontiers and Applications will cover a broad range of topics in graph neural networks, by reviewing and introducing the fundamental concepts and algorithms of GNNs, new research frontiers of GNNs, and broad and emerging applications with GNNs. In addition, rich tutorial materials will be included and introduced to help the audience gain a systematic understanding by using our recently published book-Graph Neural Networks (GNN): Foundation, Frontiers, and Applications [12], which can easily be accessed at https://graph-neural-networks.github.io/index.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心完成签到,获得积分10
21秒前
22秒前
30秒前
阿图姆发布了新的文献求助10
33秒前
45秒前
优雅香之发布了新的文献求助20
45秒前
58秒前
zhanggq123发布了新的文献求助10
1分钟前
1分钟前
深情安青应助zhanggq123采纳,获得10
1分钟前
阿图姆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
啊哈哈发布了新的文献求助10
1分钟前
Wfmmm完成签到,获得积分10
2分钟前
2分钟前
2分钟前
藤椒辣鱼应助小方采纳,获得10
2分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
zhanggq123发布了新的文献求助10
3分钟前
藤椒辣鱼应助zhanggq123采纳,获得10
3分钟前
3分钟前
聪慧小燕发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
小二郎应助zhuzhu采纳,获得10
4分钟前
5分钟前
zhuzhu发布了新的文献求助10
5分钟前
5分钟前
5分钟前
啊哈哈发布了新的文献求助10
5分钟前
5分钟前
明亮灭绝完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434804
求助须知:如何正确求助?哪些是违规求助? 3032092
关于积分的说明 8944274
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492125
科研通“疑难数据库(出版商)”最低求助积分说明 689716
邀请新用户注册赠送积分活动 685847