亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Neural Networks: Foundation, Frontiers and Applications

深度学习 计算机科学 人工神经网络 图形 人工智能 机器学习 理论计算机科学 数据科学
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Xiaojie Guo
标识
DOI:10.1145/3534678.3542609
摘要

The field of graph neural networks (GNNs) has seen rapid and incredible strides over the recent years. Graph neural networks, also known as deep learning on graphs, graph representation learning, or geometric deep learning, have become one of the fastest-growing research topics in machine learning, especially deep learning. This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including recommendation systems, computer vision, natural language processing, inductive logic programming, program synthesis, software mining, automated planning, cybersecurity, and intelligent transportation. However, as the field rapidly grows, it has been extremely challenging to gain a global perspective of the developments of GNNs. Therefore, we feel the urgency to bridge the above gap and have a comprehensive tutorial on this fast-growing yet challenging topic. This tutorial of Graph Neural Networks (GNNs): Foundation, Frontiers and Applications will cover a broad range of topics in graph neural networks, by reviewing and introducing the fundamental concepts and algorithms of GNNs, new research frontiers of GNNs, and broad and emerging applications with GNNs. In addition, rich tutorial materials will be included and introduced to help the audience gain a systematic understanding by using our recently published book-Graph Neural Networks (GNN): Foundation, Frontiers, and Applications [12], which can easily be accessed at https://graph-neural-networks.github.io/index.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬完成签到,获得积分10
19秒前
酷酷问夏完成签到 ,获得积分10
22秒前
LienAo完成签到 ,获得积分10
23秒前
27秒前
30秒前
YMS_DAMAOMI发布了新的文献求助10
31秒前
kbcbwb2002完成签到,获得积分10
39秒前
41秒前
mmyhn发布了新的文献求助10
47秒前
赘婿应助YMS_DAMAOMI采纳,获得10
50秒前
58秒前
1分钟前
热情千柳完成签到,获得积分20
1分钟前
Dritsw应助shayla采纳,获得10
1分钟前
1分钟前
keyantong完成签到,获得积分10
1分钟前
mmnn完成签到 ,获得积分10
1分钟前
1分钟前
热情千柳发布了新的文献求助10
1分钟前
1分钟前
luoxing完成签到,获得积分10
1分钟前
hyukoh发布了新的文献求助10
1分钟前
菜根谭完成签到 ,获得积分10
1分钟前
水刃木发布了新的文献求助10
1分钟前
hyukoh完成签到,获得积分20
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
luoxing发布了新的文献求助10
1分钟前
jjj完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
无花果应助Heng采纳,获得10
2分钟前
2分钟前
2分钟前
水刃木完成签到,获得积分10
2分钟前
wzz完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965622
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155441
捐赠科研通 3245347
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188