Graph Neural Networks: Foundation, Frontiers and Applications

深度学习 计算机科学 人工神经网络 图形 人工智能 机器学习 理论计算机科学 数据科学
作者
Lingfei Wu,Peng Cui,Jian Pei,Liang Zhao,Xiaojie Guo
标识
DOI:10.1145/3534678.3542609
摘要

The field of graph neural networks (GNNs) has seen rapid and incredible strides over the recent years. Graph neural networks, also known as deep learning on graphs, graph representation learning, or geometric deep learning, have become one of the fastest-growing research topics in machine learning, especially deep learning. This wave of research at the intersection of graph theory and deep learning has also influenced other fields of science, including recommendation systems, computer vision, natural language processing, inductive logic programming, program synthesis, software mining, automated planning, cybersecurity, and intelligent transportation. However, as the field rapidly grows, it has been extremely challenging to gain a global perspective of the developments of GNNs. Therefore, we feel the urgency to bridge the above gap and have a comprehensive tutorial on this fast-growing yet challenging topic. This tutorial of Graph Neural Networks (GNNs): Foundation, Frontiers and Applications will cover a broad range of topics in graph neural networks, by reviewing and introducing the fundamental concepts and algorithms of GNNs, new research frontiers of GNNs, and broad and emerging applications with GNNs. In addition, rich tutorial materials will be included and introduced to help the audience gain a systematic understanding by using our recently published book-Graph Neural Networks (GNN): Foundation, Frontiers, and Applications [12], which can easily be accessed at https://graph-neural-networks.github.io/index.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Qian完成签到 ,获得积分10
3秒前
复杂的毛巾完成签到 ,获得积分10
4秒前
kkjust发布了新的文献求助10
5秒前
苏州小北完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
9秒前
慕山完成签到 ,获得积分10
10秒前
gwbk完成签到,获得积分10
11秒前
cc完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Guofa.完成签到 ,获得积分10
16秒前
矮小的凡阳完成签到 ,获得积分10
18秒前
执着的导师应助历史真相采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
25秒前
25秒前
JinghaoLi完成签到 ,获得积分10
25秒前
霜之哀伤完成签到 ,获得积分10
26秒前
GXW完成签到,获得积分10
26秒前
28秒前
tigger完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
30秒前
你的样子完成签到,获得积分10
30秒前
xue完成签到 ,获得积分10
33秒前
阿龙完成签到,获得积分10
33秒前
游01完成签到 ,获得积分0
35秒前
辐睿完成签到,获得积分10
35秒前
Legend完成签到,获得积分10
35秒前
37秒前
ggp发布了新的文献求助50
40秒前
Legend发布了新的文献求助10
43秒前
Tysonqu完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936