亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on a fast detection method of self-discharge of lithium battery

电池(电) 自放电 开路电压 荷电状态 电压 电池组 电气工程 涓流充电 汽车工程 计算机科学 工程类 功率(物理) 物理 热力学
作者
Haiyu Liao,Bixiong Huang,Yan Cui,Huan Qin,Xintian Liu,Huayuan Xu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:55: 105431-105431 被引量:25
标识
DOI:10.1016/j.est.2022.105431
摘要

The self-discharge of the battery refers to the phenomenon that the capacity of the battery decreases after the battery is charged and placed in the open-circuit state for a period of time, which is the holding ability of the stored electricity of the battery under certain conditions. When the self-discharge of the battery is too large or the self-discharge consistency of the cells in the battery pack is poor, it will affect the cruising range of the new energy electric vehicle and the overall energy storage system. To quickly detect the self-discharge rate of lithium batteries, this paper proposes a rapid detection method to characterize the self-discharge rate by OCV (Open Circuit Voltage) in a short period and at the cell level based on the change of OCV during the battery resting process. This method removes the influence of lithium battery polarization on subsequent analysis by selecting the OCV of the appropriate time. After analyzing the OCV threshold corresponding to each cell from the experimental data obtained by screening, the OCV difference between 12 h and 24 h during the resting process is compared with the corresponding OCV threshold. The ratio of thresholds is normalized. Through the normalized results, the self-discharge rate of each cell is analyzed, and the cell with a larger self-discharge rate is obtained. After that, the self-discharge analysis results within 24 h, and the self-discharge analysis results in the complete resting process for 30d are compared and verified, it is concluded that the results detected by this method are correct, indicating that the self-discharge rapid detection method has high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
叨叨完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
高金龙完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723351
求助须知:如何正确求助?哪些是违规求助? 5276189
关于积分的说明 15298481
捐赠科研通 4871882
什么是DOI,文献DOI怎么找? 2616314
邀请新用户注册赠送积分活动 1566138
关于科研通互助平台的介绍 1523035