ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 工程类 吸附 复合材料 有机化学
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔小白发布了新的文献求助10
刚刚
刚刚
stephanie96发布了新的文献求助10
刚刚
Millie发布了新的文献求助10
1秒前
duxinyue应助sunzhiyu233采纳,获得10
1秒前
2秒前
喜悦夏之发布了新的文献求助10
3秒前
Chloe完成签到,获得积分10
3秒前
Kite完成签到,获得积分10
3秒前
JamesPei应助ZH的天方夜谭采纳,获得10
3秒前
晓峰完成签到,获得积分10
4秒前
xiao完成签到 ,获得积分10
4秒前
4秒前
6秒前
Ayu完成签到,获得积分10
6秒前
yale发布了新的文献求助10
6秒前
6秒前
Driscoll完成签到 ,获得积分10
8秒前
喜悦夏之完成签到,获得积分10
8秒前
8秒前
yatou5651发布了新的文献求助10
8秒前
10秒前
汉关发布了新的文献求助10
11秒前
¥¥¥¥¥¥¥¥完成签到 ,获得积分10
11秒前
XXF发布了新的文献求助10
11秒前
zrz发布了新的文献求助10
12秒前
12秒前
12秒前
田様应助BaekHyun采纳,获得10
14秒前
peng发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI5应助孔小白采纳,获得10
16秒前
16秒前
舒适逊完成签到 ,获得积分10
16秒前
科研通AI5应助11111采纳,获得10
17秒前
CipherSage应助hxn采纳,获得10
17秒前
19秒前
深情安青应助shatang采纳,获得10
19秒前
zxx5012发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808