ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 有机化学 吸附 工程类 复合材料
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三色堇完成签到,获得积分10
刚刚
李健的小迷弟应助Grayu采纳,获得10
刚刚
充电宝应助圆圈儿采纳,获得10
刚刚
Lucas应助丹丹采纳,获得10
刚刚
柚子发布了新的文献求助10
刚刚
lxy发布了新的文献求助10
1秒前
1秒前
粗心的采文完成签到 ,获得积分10
1秒前
废寝忘食完成签到,获得积分10
1秒前
华仔应助平淡的白猫采纳,获得10
1秒前
解铃完成签到,获得积分10
2秒前
2秒前
翻斗花园李元芳完成签到,获得积分10
3秒前
3秒前
爆米花应助Silence采纳,获得15
3秒前
迅速沛凝发布了新的文献求助10
4秒前
4秒前
江屿发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
LING发布了新的文献求助10
6秒前
keyu关注了科研通微信公众号
6秒前
小敏完成签到,获得积分10
6秒前
西海岸的风完成签到 ,获得积分10
7秒前
今后应助ooqqoo采纳,获得10
7秒前
dds完成签到,获得积分10
7秒前
轩辕十四完成签到,获得积分10
8秒前
zki发布了新的文献求助10
8秒前
9秒前
zzmyyds发布了新的文献求助10
10秒前
NiKi完成签到 ,获得积分10
10秒前
等一派好风完成签到,获得积分10
10秒前
于hhh完成签到 ,获得积分10
10秒前
姜姜姜发布了新的文献求助10
10秒前
11秒前
彭于晏应助惜_采纳,获得10
11秒前
11秒前
Verity完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133