已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 工程类 吸附 复合材料 有机化学
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈登完成签到 ,获得积分10
1秒前
joe完成签到 ,获得积分10
1秒前
2秒前
友好谷蓝发布了新的文献求助10
2秒前
2秒前
可可钳发布了新的文献求助10
3秒前
lkwat完成签到 ,获得积分10
5秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Tanya47应助科研通管家采纳,获得10
6秒前
romance发布了新的文献求助10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
Tanya47应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Tanya47应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
风行域完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
爆米花应助友好谷蓝采纳,获得10
9秒前
西吴完成签到 ,获得积分10
9秒前
焰古完成签到 ,获得积分10
9秒前
无情的问枫完成签到 ,获得积分10
9秒前
涵涵涵hh完成签到 ,获得积分10
10秒前
lijunliang完成签到,获得积分10
11秒前
hh1106完成签到 ,获得积分20
11秒前
11秒前
minkeyantong完成签到 ,获得积分10
11秒前
11秒前
kkpzc完成签到 ,获得积分10
13秒前
粗犷的灵松完成签到,获得积分10
13秒前
无极微光应助开朗的lala采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759