金属有机骨架
弧(几何)
钥匙(锁)
数据库
多孔性
材料科学
计算机科学
从头算
纳米技术
化学
机械工程
计算机安全
有机化学
吸附
工程类
复合材料
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要
Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI