ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 工程类 吸附 复合材料 有机化学
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨欣发布了新的文献求助10
刚刚
杨欣发布了新的文献求助10
刚刚
杨欣发布了新的文献求助10
刚刚
刚刚
1秒前
zyh给zyh的求助进行了留言
2秒前
underoos完成签到,获得积分10
2秒前
Victor66685应助111采纳,获得30
4秒前
4秒前
cyy完成签到,获得积分10
5秒前
5秒前
underoos发布了新的文献求助10
6秒前
张不张发布了新的文献求助10
6秒前
6秒前
alian发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
she发布了新的文献求助10
6秒前
拼搏的韭菜完成签到,获得积分10
7秒前
优美巨人发布了新的文献求助10
7秒前
Akim应助cc采纳,获得10
8秒前
8秒前
星辰大海应助清欢采纳,获得10
9秒前
斯文败类应助小冯采纳,获得10
9秒前
细心蚂蚁发布了新的文献求助10
9秒前
SunOSun发布了新的文献求助30
10秒前
学术laji发布了新的文献求助10
10秒前
10秒前
12秒前
科研通AI5应助xiaoyu123采纳,获得10
12秒前
12秒前
情怀应助awwww采纳,获得10
13秒前
neckerzhu发布了新的文献求助10
13秒前
紧张的惜寒完成签到,获得积分10
15秒前
15秒前
15秒前
干涸的脑瓜完成签到 ,获得积分10
15秒前
15秒前
16秒前
18秒前
nns完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934228
求助须知:如何正确求助?哪些是违规求助? 4202186
关于积分的说明 13056265
捐赠科研通 3976412
什么是DOI,文献DOI怎么找? 2178969
邀请新用户注册赠送积分活动 1195288
关于科研通互助平台的介绍 1106655