亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 有机化学 吸附 工程类 复合材料
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一米六发布了新的文献求助10
2秒前
慕青应助牛油果采纳,获得10
5秒前
只谈风月完成签到,获得积分10
8秒前
腼腆的寒风完成签到 ,获得积分10
9秒前
12秒前
科研大王完成签到,获得积分10
12秒前
leoskrrr完成签到,获得积分10
16秒前
牛油果发布了新的文献求助10
17秒前
Han完成签到 ,获得积分10
27秒前
顾矜应助乐求知采纳,获得10
42秒前
46秒前
54秒前
浮游漂漂应助科研通管家采纳,获得30
54秒前
Xx完成签到 ,获得积分10
55秒前
踏实的绣连完成签到 ,获得积分10
56秒前
111发布了新的文献求助10
59秒前
yr应助牛油果采纳,获得10
1分钟前
1分钟前
1分钟前
summer完成签到,获得积分20
1分钟前
1分钟前
dad0ng发布了新的文献求助10
1分钟前
1分钟前
小二郎应助dad0ng采纳,获得10
1分钟前
南风南下完成签到 ,获得积分10
1分钟前
Yu发布了新的文献求助10
1分钟前
zyyyy发布了新的文献求助10
1分钟前
1分钟前
jami-yu发布了新的文献求助10
1分钟前
jewel9完成签到,获得积分10
1分钟前
在水一方应助Yu采纳,获得10
1分钟前
明天一定早睡关注了科研通微信公众号
1分钟前
1分钟前
研友_LaOyQZ完成签到,获得积分10
1分钟前
A_123应助坦率的尔冬采纳,获得10
1分钟前
jami-yu完成签到,获得积分10
1分钟前
坦率的尔冬完成签到,获得积分10
1分钟前
万能图书馆应助哈哈哈采纳,获得10
2分钟前
2分钟前
dida完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812