ARC-MOF: A Diverse Database of Metal-Organic Frameworks with DFT-Derived Partial Atomic Charges and Descriptors for Machine Learning

金属有机骨架 弧(几何) 钥匙(锁) 数据库 多孔性 材料科学 计算机科学 从头算 纳米技术 化学 机械工程 计算机安全 有机化学 吸附 工程类 复合材料
作者
Jake Burner,Jun Luo,Andrew J. P. White,Adam Mirmiran,Ohmin Kwon,Peter G. Boyd,Steven M. Maley,Marco Gibaldi,Scott Simrod,Victoria Ogden,Tom K. Woo
标识
DOI:10.26434/chemrxiv-2022-mvr06
摘要

Metal-organic frameworks (MOFs) are a class of crystalline materials composed of metal nodes or clusters connected via semi-rigid organic linkers. Owing to their high surface area, porosity, and tunability, MOFs have received significant attention for numerous applications such as gas separation and storage. Atomistic simulations and data-driven methods (e.g., machine learning) have been successfully employed to screen large databases and successfully develop new experimentally synthesized and validated MOFs for CO2 capture. To enable data-driven materials discovery for any application, the first (and arguably most crucial) step is database curation. This work introduces the ab initio REPEAT charge MOF (ARC-MOF) database. This is a database of ~280,000 MOFs which have been either experimentally characterized or computationally generated, spanning all publicly available MOF databases. A key feature of ARC-MOF is that it contains DFT-derived electrostatic potential fitted partial atomic charges for each MOF. Additionally, ARC-MOF contains pre-computed descriptors for out-of-the-box machine learning applications. An in-depth analysis of the diversity of ARC-MOF with respect to the currently mapped design space of MOFs was performed – a critical, yet commonly overlooked aspect of previously reported MOF databases. Using this analysis, balanced subsets from ARC-MOF for various machine learning purposes have been identified. Other chemical and geometric diversity analyses are presented, with an analysis on the effect of charge assignment method on atomistic simulation of gas uptake in MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘梦瑶发布了新的文献求助10
2秒前
无花果应助隐形之玉采纳,获得10
2秒前
zhanghhhy发布了新的文献求助10
3秒前
3秒前
4秒前
研友_VZG7GZ应助现代的无春采纳,获得10
4秒前
打打应助JoJo采纳,获得10
6秒前
刘梦瑶完成签到,获得积分10
6秒前
SciGPT应助Zzz采纳,获得10
7秒前
行走完成签到,获得积分10
8秒前
Orange应助一树春风采纳,获得10
9秒前
10秒前
bing完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
安详鸿完成签到 ,获得积分10
13秒前
14秒前
14秒前
Mathew发布了新的文献求助10
14秒前
15秒前
姽婳wy发布了新的文献求助10
17秒前
高xuewen应助务实的怜阳采纳,获得10
17秒前
共享精神应助夏青荷采纳,获得10
18秒前
秦小琦发布了新的文献求助10
18秒前
19秒前
XHL驳回了婷婷应助
20秒前
婷婷应助junhan采纳,获得10
20秒前
fff完成签到,获得积分10
21秒前
21秒前
英姑应助张卉佳采纳,获得10
22秒前
桐桐应助雨的前世采纳,获得30
23秒前
领导范儿应助ash采纳,获得10
23秒前
Solar energy发布了新的文献求助10
24秒前
Zzz关注了科研通微信公众号
25秒前
大模型应助大气的曼文采纳,获得10
26秒前
26秒前
婷婷应助zhaoyuqing采纳,获得10
26秒前
hhan发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234