亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel medical question and answer system: Graph convolutional neural network based with knowledge graph optimization

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学 收敛速度 机器学习 数据挖掘 钥匙(锁) 计算机安全
作者
Xu Wang,Zijin Luo,Rui He,Yixin Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120211-120211 被引量:17
标识
DOI:10.1016/j.eswa.2023.120211
摘要

In order to effectively integrate medical data and alleviate the problem of uneven distribution of medical resources. In this paper, we combine the techniques of expert systems, graph neural networks, and knowledge graphs to propose a disease guidance model combining semi-supervised graph neural networks and knowledge graphs. We use the MASR speech recognition module combined with gated convolutional units for effective text processing of different types of speech; then we use the LTP module in natural language processing for semantic analysis and segmentation matching of interrogative sentences; we combine keywords with the number of diseases and divide and construct the set of nodes with knowledge graphs. And we use semi-supervised graph neural network type analysis to give treatment results and rehabilitation suggestions effectively. We optimize the Chinese and English corpora respectively, adding consideration for local dialect audiences. We performed a comprehensive comparison of the accuracy and training time of several mainstream GCN algorithms and our GCN semi-supervised (SGS) under various graphical text datasets to validate the efficiency and accuracy of our own algorithm choices. We preprocess the number of different symptoms for classification and simplify the redundant nodes to optimize the running time while taking into account the overall convergence. The operational mechanism of the model as well as the convergence and hits under different symptom parameters are explained through hit rate and convergence rate metrics to demonstrate the effectiveness and stability of the model under proprietary medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paradiselost发布了新的文献求助10
1秒前
xiuxiu125完成签到,获得积分10
2秒前
Fairy完成签到,获得积分10
17秒前
无极微光应助xiuxiu125采纳,获得20
17秒前
22秒前
KINGAZX发布了新的文献求助10
27秒前
文静的翠彤完成签到 ,获得积分10
28秒前
在水一方应助lawang采纳,获得10
44秒前
天天快乐应助lawang采纳,获得10
44秒前
深情安青应助lawang采纳,获得10
44秒前
orixero应助lawang采纳,获得10
44秒前
Criminology34应助优美香露采纳,获得80
47秒前
wanci应助paradiselost采纳,获得10
55秒前
1分钟前
无花果应助lawang采纳,获得10
1分钟前
打打应助lawang采纳,获得10
1分钟前
充电宝应助lawang采纳,获得10
1分钟前
彭于晏应助lawang采纳,获得10
1分钟前
orixero应助lawang采纳,获得10
1分钟前
香蕉觅云应助lawang采纳,获得10
1分钟前
天天快乐应助lawang采纳,获得10
1分钟前
英俊的铭应助lawang采纳,获得10
1分钟前
隐形曼青应助lawang采纳,获得10
1分钟前
赘婿应助lawang采纳,获得10
1分钟前
1分钟前
paradiselost发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助xiuxiu125采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
kishk发布了新的文献求助10
2分钟前
huhdcid发布了新的文献求助30
2分钟前
paradiselost完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658155
求助须知:如何正确求助?哪些是违规求助? 4817538
关于积分的说明 15080884
捐赠科研通 4816452
什么是DOI,文献DOI怎么找? 2577381
邀请新用户注册赠送积分活动 1532357
关于科研通互助平台的介绍 1490989