Novel medical question and answer system: Graph convolutional neural network based with knowledge graph optimization

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学 收敛速度 机器学习 数据挖掘 钥匙(锁) 计算机安全
作者
Xu Wang,Zijin Luo,Rui He,Yixin Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120211-120211 被引量:17
标识
DOI:10.1016/j.eswa.2023.120211
摘要

In order to effectively integrate medical data and alleviate the problem of uneven distribution of medical resources. In this paper, we combine the techniques of expert systems, graph neural networks, and knowledge graphs to propose a disease guidance model combining semi-supervised graph neural networks and knowledge graphs. We use the MASR speech recognition module combined with gated convolutional units for effective text processing of different types of speech; then we use the LTP module in natural language processing for semantic analysis and segmentation matching of interrogative sentences; we combine keywords with the number of diseases and divide and construct the set of nodes with knowledge graphs. And we use semi-supervised graph neural network type analysis to give treatment results and rehabilitation suggestions effectively. We optimize the Chinese and English corpora respectively, adding consideration for local dialect audiences. We performed a comprehensive comparison of the accuracy and training time of several mainstream GCN algorithms and our GCN semi-supervised (SGS) under various graphical text datasets to validate the efficiency and accuracy of our own algorithm choices. We preprocess the number of different symptoms for classification and simplify the redundant nodes to optimize the running time while taking into account the overall convergence. The operational mechanism of the model as well as the convergence and hits under different symptom parameters are explained through hit rate and convergence rate metrics to demonstrate the effectiveness and stability of the model under proprietary medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助危机的涵柏采纳,获得10
刚刚
1秒前
研友_pLw3vL完成签到,获得积分10
1秒前
英俊的铭应助韦灵珊采纳,获得10
2秒前
hdisyd完成签到 ,获得积分10
3秒前
4秒前
骑猪看唱本完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
liufang完成签到,获得积分10
7秒前
7秒前
圣斗士发布了新的文献求助10
7秒前
8秒前
LJ程励发布了新的文献求助10
8秒前
fosca完成签到,获得积分10
9秒前
9秒前
JamesPei应助SumeiSophia采纳,获得10
10秒前
孙浩博发布了新的文献求助10
10秒前
10秒前
zzjjxx发布了新的文献求助10
10秒前
浮游应助辉太狼采纳,获得10
10秒前
10秒前
Mic应助165采纳,获得10
11秒前
研友_VZG7GZ应助han采纳,获得10
11秒前
liufang发布了新的文献求助10
12秒前
zhoumaoyuan发布了新的文献求助10
13秒前
cc完成签到,获得积分10
13秒前
浮游应助蓝莓酱蘸橘子采纳,获得10
13秒前
吉驴发布了新的文献求助10
14秒前
14秒前
柒柒发布了新的文献求助30
15秒前
15秒前
15秒前
喵呜发布了新的文献求助10
16秒前
17秒前
浮游应助超级的战斗机采纳,获得10
18秒前
科研通AI6应助孙浩博采纳,获得10
19秒前
LJ程励完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571591
求助须知:如何正确求助?哪些是违规求助? 4656832
关于积分的说明 14718078
捐赠科研通 4597681
什么是DOI,文献DOI怎么找? 2523318
邀请新用户注册赠送积分活动 1494146
关于科研通互助平台的介绍 1464292