亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel medical question and answer system: Graph convolutional neural network based with knowledge graph optimization

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学 收敛速度 机器学习 数据挖掘 钥匙(锁) 计算机安全
作者
Xu Wang,Zijin Luo,Rui He,Yixin Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120211-120211 被引量:17
标识
DOI:10.1016/j.eswa.2023.120211
摘要

In order to effectively integrate medical data and alleviate the problem of uneven distribution of medical resources. In this paper, we combine the techniques of expert systems, graph neural networks, and knowledge graphs to propose a disease guidance model combining semi-supervised graph neural networks and knowledge graphs. We use the MASR speech recognition module combined with gated convolutional units for effective text processing of different types of speech; then we use the LTP module in natural language processing for semantic analysis and segmentation matching of interrogative sentences; we combine keywords with the number of diseases and divide and construct the set of nodes with knowledge graphs. And we use semi-supervised graph neural network type analysis to give treatment results and rehabilitation suggestions effectively. We optimize the Chinese and English corpora respectively, adding consideration for local dialect audiences. We performed a comprehensive comparison of the accuracy and training time of several mainstream GCN algorithms and our GCN semi-supervised (SGS) under various graphical text datasets to validate the efficiency and accuracy of our own algorithm choices. We preprocess the number of different symptoms for classification and simplify the redundant nodes to optimize the running time while taking into account the overall convergence. The operational mechanism of the model as well as the convergence and hits under different symptom parameters are explained through hit rate and convergence rate metrics to demonstrate the effectiveness and stability of the model under proprietary medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
doctor_quyi发布了新的文献求助10
3秒前
wangran_778完成签到,获得积分10
5秒前
7秒前
8秒前
李义志完成签到,获得积分10
11秒前
11秒前
佳佳发布了新的文献求助10
11秒前
啊哦发布了新的文献求助30
12秒前
今后应助李义志采纳,获得10
14秒前
科研通AI6应助黄黄黄采纳,获得10
14秒前
无极微光应助缓慢的藏鸟采纳,获得20
15秒前
贱小贱完成签到,获得积分10
15秒前
ZYP发布了新的文献求助10
18秒前
科研狗完成签到 ,获得积分10
19秒前
无花果应助好了没了采纳,获得10
19秒前
科研通AI6应助啊哦采纳,获得30
24秒前
黎娅完成签到 ,获得积分10
25秒前
27秒前
30秒前
好了没了完成签到,获得积分10
30秒前
挚智完成签到 ,获得积分10
32秒前
32秒前
好了没了发布了新的文献求助10
33秒前
lele完成签到,获得积分10
33秒前
迷路世立完成签到,获得积分10
34秒前
36秒前
FashionBoy应助vinss66home采纳,获得10
37秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
38秒前
遇晚完成签到,获得积分10
45秒前
肥牛完成签到,获得积分10
46秒前
49秒前
解你所忧完成签到 ,获得积分10
50秒前
SciGPT应助浅呀呀呀采纳,获得10
52秒前
ZepHyR发布了新的文献求助10
54秒前
58秒前
李义志发布了新的文献求助10
1分钟前
魁梧的衫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264