Novel medical question and answer system: Graph convolutional neural network based with knowledge graph optimization

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学 收敛速度 机器学习 数据挖掘 钥匙(锁) 计算机安全
作者
Xu Wang,Zijin Luo,Rui He,Yixin Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120211-120211 被引量:17
标识
DOI:10.1016/j.eswa.2023.120211
摘要

In order to effectively integrate medical data and alleviate the problem of uneven distribution of medical resources. In this paper, we combine the techniques of expert systems, graph neural networks, and knowledge graphs to propose a disease guidance model combining semi-supervised graph neural networks and knowledge graphs. We use the MASR speech recognition module combined with gated convolutional units for effective text processing of different types of speech; then we use the LTP module in natural language processing for semantic analysis and segmentation matching of interrogative sentences; we combine keywords with the number of diseases and divide and construct the set of nodes with knowledge graphs. And we use semi-supervised graph neural network type analysis to give treatment results and rehabilitation suggestions effectively. We optimize the Chinese and English corpora respectively, adding consideration for local dialect audiences. We performed a comprehensive comparison of the accuracy and training time of several mainstream GCN algorithms and our GCN semi-supervised (SGS) under various graphical text datasets to validate the efficiency and accuracy of our own algorithm choices. We preprocess the number of different symptoms for classification and simplify the redundant nodes to optimize the running time while taking into account the overall convergence. The operational mechanism of the model as well as the convergence and hits under different symptom parameters are explained through hit rate and convergence rate metrics to demonstrate the effectiveness and stability of the model under proprietary medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助大气灵枫采纳,获得10
刚刚
动听健柏发布了新的文献求助10
1秒前
康康完成签到,获得积分10
1秒前
深情安青应助独特的易形采纳,获得10
1秒前
linkman发布了新的文献求助100
1秒前
wangxinyi完成签到 ,获得积分10
2秒前
pups发布了新的文献求助10
3秒前
芳芳发布了新的文献求助10
3秒前
万能图书馆应助lq采纳,获得10
4秒前
香蕉觅云应助危机的玉米采纳,获得10
4秒前
充电宝应助一一采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
yao完成签到,获得积分10
4秒前
郭德久完成签到 ,获得积分10
5秒前
gmc关闭了gmc文献求助
6秒前
6秒前
大模型应助yao采纳,获得10
8秒前
8秒前
8秒前
9秒前
bunny发布了新的文献求助10
9秒前
一只西瓜茶完成签到,获得积分20
9秒前
9秒前
共享精神应助修日天采纳,获得10
10秒前
orixero应助贪玩寄翠采纳,获得10
10秒前
刘佳完成签到 ,获得积分10
11秒前
11秒前
高贵振家发布了新的文献求助10
12秒前
12秒前
sciscisci发布了新的文献求助10
12秒前
EShan完成签到,获得积分10
12秒前
12秒前
zy完成签到,获得积分10
12秒前
香蕉觅云应助数值分析采纳,获得10
13秒前
13秒前
邱邱完成签到,获得积分10
14秒前
目眩完成签到,获得积分10
14秒前
14秒前
RNAPW发布了新的文献求助10
14秒前
roy完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058