Novel medical question and answer system: Graph convolutional neural network based with knowledge graph optimization

计算机科学 图形 卷积神经网络 人工智能 理论计算机科学 收敛速度 机器学习 数据挖掘 钥匙(锁) 计算机安全
作者
Xu Wang,Zijin Luo,Rui He,Yixin Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120211-120211 被引量:17
标识
DOI:10.1016/j.eswa.2023.120211
摘要

In order to effectively integrate medical data and alleviate the problem of uneven distribution of medical resources. In this paper, we combine the techniques of expert systems, graph neural networks, and knowledge graphs to propose a disease guidance model combining semi-supervised graph neural networks and knowledge graphs. We use the MASR speech recognition module combined with gated convolutional units for effective text processing of different types of speech; then we use the LTP module in natural language processing for semantic analysis and segmentation matching of interrogative sentences; we combine keywords with the number of diseases and divide and construct the set of nodes with knowledge graphs. And we use semi-supervised graph neural network type analysis to give treatment results and rehabilitation suggestions effectively. We optimize the Chinese and English corpora respectively, adding consideration for local dialect audiences. We performed a comprehensive comparison of the accuracy and training time of several mainstream GCN algorithms and our GCN semi-supervised (SGS) under various graphical text datasets to validate the efficiency and accuracy of our own algorithm choices. We preprocess the number of different symptoms for classification and simplify the redundant nodes to optimize the running time while taking into account the overall convergence. The operational mechanism of the model as well as the convergence and hits under different symptom parameters are explained through hit rate and convergence rate metrics to demonstrate the effectiveness and stability of the model under proprietary medical conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jin完成签到 ,获得积分10
1秒前
1秒前
1秒前
平淡如天完成签到,获得积分10
1秒前
Usin完成签到,获得积分10
2秒前
清晨发布了新的文献求助10
3秒前
陈昱钱发布了新的文献求助10
3秒前
含蓄小蕊发布了新的文献求助10
3秒前
赘婿应助小武采纳,获得10
4秒前
6秒前
Akim应助Rottyyii采纳,获得10
6秒前
姜夔发布了新的文献求助10
7秒前
三方完成签到,获得积分10
7秒前
wanci应助freesialll采纳,获得10
8秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Akim应助7890733采纳,获得10
11秒前
12秒前
Jasper应助付ffgseg采纳,获得10
12秒前
黎先生完成签到,获得积分10
12秒前
陈陈陈完成签到 ,获得积分10
13秒前
14秒前
暮色晚钟完成签到,获得积分10
14秒前
14秒前
小乔应助qdong采纳,获得10
16秒前
gkq完成签到,获得积分10
16秒前
王柯予完成签到,获得积分10
16秒前
autumn完成签到,获得积分10
16秒前
郑恒松发布了新的文献求助10
17秒前
一二完成签到,获得积分10
17秒前
刘步遥完成签到 ,获得积分10
17秒前
Jervis完成签到 ,获得积分10
17秒前
17秒前
18秒前
脑洞疼应助bio-tang采纳,获得10
19秒前
20秒前
小兔叽完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858