MASNet: A Robust Deep Marine Animal Segmentation Network

计算机科学 分割 人工智能
作者
Zhenqi Fu,Ruizhe Chen,Yue Huang,En Cheng,Xinghao Ding,Kai‐Kuang Ma
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (3): 1104-1115 被引量:3
标识
DOI:10.1109/joe.2023.3252760
摘要

Marine animal studies are of great importance to human beings and instrumental to many research areas. How to identify such animals through image processing is a challenging task that leads to marine animal segmentation (MAS). Although deep neural networks have been widely applied for object segmentation, few of them consider the complex imaging condition in the water and the camouflage property of marine animals. To this end, a robust deep marine animal segmentation network is proposed in this article. Specifically, we design a new data augmentation strategy to randomly change the degradation and camouflage attributes of the original objects. With the augmentations, a fusion-based deep neural network constructed in a Siamese manner is trained to learn the shared semantic representations. Moreover, we construct a new large-scale real-world MAS data set for conducting extensive experiments. It consists of over 3000 images with various underwater scenes and objects. Each image is annotated with an object-level mask and assigned to a category. Extensive experimental results show that our method significantly outperforms 12 state-of-the-art methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朽木完成签到 ,获得积分10
2秒前
2秒前
fanyueyue应助111采纳,获得10
4秒前
4秒前
4秒前
kcmat发布了新的文献求助10
5秒前
hh完成签到,获得积分10
6秒前
Philadelphus发布了新的文献求助10
7秒前
einuo完成签到,获得积分10
7秒前
AKYDXS完成签到,获得积分10
10秒前
昏睡的蟠桃应助Llllll采纳,获得200
10秒前
科研通AI2S应助hao采纳,获得10
10秒前
11秒前
11秒前
香蕉觅云应助阿湫采纳,获得10
12秒前
星辰大海应助星辰采纳,获得10
12秒前
阿卡宁完成签到,获得积分10
12秒前
lzw完成签到 ,获得积分10
12秒前
沉静烧仙草完成签到,获得积分20
13秒前
烟花应助嘉嘉琦采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
accepted应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
cdh1994应助kcmat采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048