MASNet: A Robust Deep Marine Animal Segmentation Network

计算机科学 分割 人工智能
作者
Zhenqi Fu,Ruizhe Chen,Yue Huang,En Cheng,Xinghao Ding,Kai‐Kuang Ma
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (3): 1104-1115 被引量:3
标识
DOI:10.1109/joe.2023.3252760
摘要

Marine animal studies are of great importance to human beings and instrumental to many research areas. How to identify such animals through image processing is a challenging task that leads to marine animal segmentation (MAS). Although deep neural networks have been widely applied for object segmentation, few of them consider the complex imaging condition in the water and the camouflage property of marine animals. To this end, a robust deep marine animal segmentation network is proposed in this article. Specifically, we design a new data augmentation strategy to randomly change the degradation and camouflage attributes of the original objects. With the augmentations, a fusion-based deep neural network constructed in a Siamese manner is trained to learn the shared semantic representations. Moreover, we construct a new large-scale real-world MAS data set for conducting extensive experiments. It consists of over 3000 images with various underwater scenes and objects. Each image is annotated with an object-level mask and assigned to a category. Extensive experimental results show that our method significantly outperforms 12 state-of-the-art methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangguodewunian完成签到,获得积分10
刚刚
阿柒完成签到,获得积分10
刚刚
齐天大圣完成签到,获得积分10
1秒前
1秒前
ww完成签到,获得积分10
1秒前
1秒前
银河打工人完成签到,获得积分10
1秒前
tsuipeng发布了新的文献求助10
2秒前
3秒前
平常安双发布了新的文献求助30
3秒前
4秒前
4秒前
ww发布了新的文献求助10
4秒前
听说发布了新的文献求助10
5秒前
WANG完成签到,获得积分10
5秒前
5秒前
6秒前
寡妇哥完成签到 ,获得积分10
7秒前
WANG发布了新的文献求助10
8秒前
8秒前
明亮巨人完成签到 ,获得积分10
9秒前
9秒前
10秒前
耍酷代柔发布了新的文献求助10
10秒前
zxl完成签到,获得积分20
10秒前
清沐完成签到 ,获得积分10
10秒前
skw完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
scienceljk完成签到,获得积分10
13秒前
xumengyu发布了新的文献求助10
13秒前
酷波er应助lllllllll采纳,获得10
13秒前
姜招财发布了新的文献求助30
13秒前
城南发布了新的文献求助10
14秒前
慕青应助zhy采纳,获得10
14秒前
15秒前
酷波er应助boniu采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842319
求助须知:如何正确求助?哪些是违规求助? 3384417
关于积分的说明 10534630
捐赠科研通 3104925
什么是DOI,文献DOI怎么找? 1709841
邀请新用户注册赠送积分活动 823411
科研通“疑难数据库(出版商)”最低求助积分说明 774059