MASNet: A Robust Deep Marine Animal Segmentation Network

计算机科学 分割 人工智能
作者
Zhenqi Fu,Ruizhe Chen,Yue Huang,En Cheng,Xinghao Ding,Kai‐Kuang Ma
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (3): 1104-1115 被引量:3
标识
DOI:10.1109/joe.2023.3252760
摘要

Marine animal studies are of great importance to human beings and instrumental to many research areas. How to identify such animals through image processing is a challenging task that leads to marine animal segmentation (MAS). Although deep neural networks have been widely applied for object segmentation, few of them consider the complex imaging condition in the water and the camouflage property of marine animals. To this end, a robust deep marine animal segmentation network is proposed in this article. Specifically, we design a new data augmentation strategy to randomly change the degradation and camouflage attributes of the original objects. With the augmentations, a fusion-based deep neural network constructed in a Siamese manner is trained to learn the shared semantic representations. Moreover, we construct a new large-scale real-world MAS data set for conducting extensive experiments. It consists of over 3000 images with various underwater scenes and objects. Each image is annotated with an object-level mask and assigned to a category. Extensive experimental results show that our method significantly outperforms 12 state-of-the-art methods both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmhxpz发布了新的文献求助10
刚刚
立刻有完成签到 ,获得积分10
1秒前
1秒前
震动的千萍完成签到,获得积分10
2秒前
akmdh完成签到,获得积分10
3秒前
5秒前
jam完成签到,获得积分20
5秒前
QSJ完成签到,获得积分10
5秒前
小白完成签到,获得积分10
7秒前
mahaha完成签到,获得积分10
7秒前
FashionBoy应助庸人自扰采纳,获得10
7秒前
7秒前
奶黄包完成签到,获得积分10
8秒前
8秒前
丘比特应助Thi采纳,获得10
9秒前
义气的元柏完成签到 ,获得积分10
10秒前
11秒前
领导范儿应助加湿器采纳,获得10
11秒前
12秒前
纯洁发布了新的文献求助10
13秒前
深情安青应助坚定尔白采纳,获得10
14秒前
Da-ming完成签到,获得积分10
15秒前
BareBear完成签到,获得积分10
15秒前
愉快的楷瑞完成签到,获得积分10
15秒前
SShi关注了科研通微信公众号
16秒前
16秒前
静静完成签到,获得积分10
17秒前
18秒前
DJ发布了新的文献求助10
19秒前
拾柒完成签到 ,获得积分10
19秒前
蛮蛮完成签到,获得积分10
20秒前
21秒前
22秒前
izumi完成签到 ,获得积分10
22秒前
需要吗发布了新的文献求助10
23秒前
24秒前
24秒前
NexusExplorer应助猫滩儿采纳,获得10
24秒前
Green完成签到,获得积分10
26秒前
Hnuy完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092