MASNet: A Robust Deep Marine Animal Segmentation Network

计算机科学 分割 人工智能
作者
Zhenqi Fu,Ruizhe Chen,Yue Huang,En Cheng,Xinghao Ding,Kai‐Kuang Ma
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (3): 1104-1115 被引量:11
标识
DOI:10.1109/joe.2023.3252760
摘要

Marine animal studies are of great importance to human beings and instrumental to many research areas. How to identify such animals through image processing is a challenging task that leads to marine animal segmentation (MAS). Although deep neural networks have been widely applied for object segmentation, few of them consider the complex imaging condition in the water and the camouflage property of marine animals. To this end, a robust deep marine animal segmentation network is proposed in this article. Specifically, we design a new data augmentation strategy to randomly change the degradation and camouflage attributes of the original objects. With the augmentations, a fusion-based deep neural network constructed in a Siamese manner is trained to learn the shared semantic representations. Moreover, we construct a new large-scale real-world MAS data set for conducting extensive experiments. It consists of over 3000 images with various underwater scenes and objects. Each image is annotated with an object-level mask and assigned to a category. Extensive experimental results show that our method significantly outperforms 12 state-of-the-art methods both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
隐形曼青应助细腻翠霜采纳,获得10
1秒前
orixero应助愿景采纳,获得10
1秒前
1秒前
肥嘟嘟左卫门完成签到,获得积分20
2秒前
踏实的无敌完成签到,获得积分10
2秒前
2秒前
yangkaiyu完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
科研通AI6应助XIEQ采纳,获得10
4秒前
luxiansheng完成签到,获得积分10
4秒前
4秒前
Whr发布了新的文献求助10
4秒前
fxx2021完成签到,获得积分10
4秒前
4秒前
共享精神应助牛小牛采纳,获得10
4秒前
CipherSage应助Kate采纳,获得10
5秒前
5秒前
6秒前
yy111发布了新的文献求助30
6秒前
Ashui发布了新的文献求助10
7秒前
rui完成签到 ,获得积分10
7秒前
w8290发布了新的文献求助15
7秒前
fxx2021发布了新的文献求助10
7秒前
7秒前
英姑应助自洽采纳,获得10
7秒前
自觉飞风完成签到,获得积分10
8秒前
燕子发布了新的文献求助10
9秒前
9秒前
叕叕完成签到,获得积分10
9秒前
小鳄鱼发布了新的文献求助10
9秒前
10秒前
岁月轻狂完成签到,获得积分10
10秒前
球球冲啊冲完成签到,获得积分10
10秒前
舒适铅笔发布了新的文献求助10
10秒前
10秒前
FashionBoy应助lrrrrrrr采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576925
求助须知:如何正确求助?哪些是违规求助? 4662126
关于积分的说明 14740050
捐赠科研通 4602835
什么是DOI,文献DOI怎么找? 2525962
邀请新用户注册赠送积分活动 1495839
关于科研通互助平台的介绍 1465470