尖晶石
钙钛矿(结构)
催化作用
化学工程
纳米复合材料
降级(电信)
化学
氧化还原
材料科学
无机化学
纳米技术
结晶学
有机化学
工程类
电信
冶金
计算机科学
作者
Cheng Cheng,Lian Chang,Xiaodan Zhang,Qingchen Deng,Hongxiang Chai,Yuming Huang
标识
DOI:10.1016/j.envres.2023.115994
摘要
Conventional perovskite oxides (ABO3) tend to suffer from their inactive surfaces and limited active sites that reduce their catalytic activity and stability, while interface engineering is a facile modulating technique to boost the catalyst's inherent activity by constructing heterogeneous interfaces. In this study, perovskite/spinel LaCoO3/Co3O4 nanocomposites with heterogeneous interfaces were synthesized via sol-gel and in-situ gradient etching methods to activate peroxymonosulfate (PMS) for degrading levofloxacin (LEV). LaCoO3 on the surface was etched into spinel Co3O4, and LaCoO3/Co3O4 nanocomposites with two crystal structures of perovskite and spinel were successfully formed. The surface-modified LaCoO3/Co3O4 exhibited superior catalytic performance with a reaction rate constant more than 2 times that of the original LaCoO3, as well as excellent pH adaptability (3-11) and reusability (more than 6 recyclings) for LEV degradation. Besides, multiple characterization techniques were carried out to find that LaCoO3/Co3O4 possessed a larger specific surface area and richer oxygen vacancies after surface modification, which provided more active sites and accelerated mass transfer rate. The mechanism of reactive oxygen species involved in the reaction system was proposed that LaCoO3/Co3O4 not only reacted with PMS directly to produce SO4•- and •OH but also its surface hydroxyl group helped to form the [≡Co(Ⅲ)OOSO3]+ reactive complex with PMS to produce O2•- and 1O2. In addition, electrochemical experiments demonstrated that the surface electronic structure of LaCoO3/Co3O4 was effectively regulated, exhibiting a faster electron transfer rate and facilitating the redox process. By detecting and identifying degradation intermediates, three degradation pathways for LEV were proposed. Our work provided profound insights into the design of efficient and long-lasting catalysts for advanced oxidation processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI