电化学发光
生物传感器
阳极
电极
阴极
纳米技术
钌
材料科学
化学
组合化学
催化作用
物理化学
生物化学
作者
Hongkun Li,Qianqian Cai,Jianru Wang,Guifen Jie
标识
DOI:10.1016/j.bios.2023.115315
摘要
In this work, a unique FeMoOv nanozyme-bipolar electrode (NM-BPE) electrochemiluminescence (ECL) biosensing and imaging platform was proposed for the first time to realize sensitive detection of target hydrogen peroxide (H2O2) and prostate specific antigen (PSA). Considering the advantage that the cathode and anode poles of the bipolar electrode (BPE) can be modified respectively, this work was carried out using anode equipped with ECL reagent bipyridine ruthenium (Ru(bpy)32+), and cathode equipped with the Fe-doped molybdenum oxide/Au nanoparticles (FeMoOv/AuNPs) with excellent peroxidase (POD) and catalase (CAT)-like activity. Because FeMoOv/AuNPs show efficient enzyme catalysis effect and can greatly promote the decomposition of H2O2, thus the electron transfer rate in the NM-BPE system would be much accelerated to enhance the ECL signal of Ru(bpy)32+. Based on this principle, this work not only realized sensitive detection of H2O2, but also ingeniously designed an sandwich immunosensor using FeMoOv/AuNPs as recognition probe to mediate the ECL response on the anode, achieving highly sensitive detection of PSA. Furthermore, a unique mobile phone ECL imaging system was developed for assay of PSA at different concentrations, which opened a new portable imaging sensing device for bioassays. This work was the first time to combine nanozymes with bipolar electrodes for ECL analysis and imaging, which not only broadened the applications of nanozymes, but also pioneered the new joint ECL research technique of bipolar electrode and ECL imaging in bioassays, showing great application prospect for multiple detection of proteins, nucleic acids and cancer cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI