清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Reinforcement Learning-Based Online Resource Management for UAV-Assisted Edge Computing With Dual Connectivity

计算机科学 移动边缘计算 强化学习 Lyapunov优化 服务器 分布式计算 最优化问题 整数规划 基站 边缘计算 排队论 资源配置 数学优化 GSM演进的增强数据速率 计算机网络 人工智能 算法 Lyapunov重新设计 数学 李雅普诺夫指数 混乱的
作者
Linh Hoang,Chuyen T. Nguyen,Anh T. Pham
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 2761-2776 被引量:8
标识
DOI:10.1109/tnet.2023.3263538
摘要

Mobile Edge Computing (MEC) is a key technology towards delay-sensitive and computation-intensive applications in future cellular networks. In this paper, we consider a multi-user, multi-server system where the cellular base station is assisted by a UAV, both of which provide additional MEC services to the terrestrial users. Via dual connectivity (DC), each user can simultaneously offload tasks to the macro base station and the UAV-mounted MEC server for parallel computing, while also processing some tasks locally. We aim to propose an online resource management framework that minimizes the average power consumption of the whole system, considering long-term constraints on queue stability and computational delay of the queueing system. Due to the coexistence of two servers, the problem is highly complex and formulated as a multi-stage mixed integer non-linear programming (MINLP) problem. To solve the MINLP with reduced computational complexity, we first adopt Lyapunov optimization to transform the original multi-stage problem into deterministic problems that are manageable in each time slot. Afterward, the transformed problem is solved using an integrated learning-optimization approach, where model-free Deep Reinforcement Learning (DRL) is combined with model-based optimization. Via extensive simulation and theoretical analyses, we show that the proposed framework is guaranteed to converge and can produce nearly the same performance as the optimal solution obtained via an exhaustive search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚朴完成签到 ,获得积分10
11秒前
12秒前
XD824发布了新的文献求助10
19秒前
qdsj2033完成签到,获得积分10
33秒前
馆长举报聪明无颜求助涉嫌违规
36秒前
冷静丸子完成签到 ,获得积分10
43秒前
46秒前
量子星尘发布了新的文献求助10
55秒前
juliar完成签到 ,获得积分10
58秒前
rick3455完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
小明完成签到 ,获得积分10
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
Guo完成签到,获得积分20
1分钟前
柳叶洋完成签到,获得积分10
1分钟前
tingalan完成签到,获得积分10
2分钟前
小白白完成签到 ,获得积分10
2分钟前
王佳豪完成签到,获得积分10
2分钟前
2分钟前
XD824发布了新的文献求助10
2分钟前
2分钟前
yun发布了新的文献求助10
2分钟前
彦子完成签到 ,获得积分10
2分钟前
Gary完成签到 ,获得积分10
3分钟前
CipherSage应助mervin采纳,获得10
3分钟前
请输入昵称完成签到 ,获得积分10
3分钟前
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
Amon完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
幽默滑板完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
l老王完成签到 ,获得积分10
3分钟前
秋夜临完成签到,获得积分0
3分钟前
gwbk完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596940
求助须知:如何正确求助?哪些是违规求助? 4008683
关于积分的说明 12409438
捐赠科研通 3687775
什么是DOI,文献DOI怎么找? 2032685
邀请新用户注册赠送积分活动 1065914
科研通“疑难数据库(出版商)”最低求助积分说明 951209