亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning-Based Online Resource Management for UAV-Assisted Edge Computing With Dual Connectivity

计算机科学 移动边缘计算 强化学习 Lyapunov优化 服务器 分布式计算 最优化问题 整数规划 基站 边缘计算 排队论 资源配置 数学优化 GSM演进的增强数据速率 计算机网络 人工智能 算法 Lyapunov重新设计 数学 李雅普诺夫指数 混乱的
作者
Linh Hoang,Chuyen T. Nguyen,Anh T. Pham
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 2761-2776 被引量:8
标识
DOI:10.1109/tnet.2023.3263538
摘要

Mobile Edge Computing (MEC) is a key technology towards delay-sensitive and computation-intensive applications in future cellular networks. In this paper, we consider a multi-user, multi-server system where the cellular base station is assisted by a UAV, both of which provide additional MEC services to the terrestrial users. Via dual connectivity (DC), each user can simultaneously offload tasks to the macro base station and the UAV-mounted MEC server for parallel computing, while also processing some tasks locally. We aim to propose an online resource management framework that minimizes the average power consumption of the whole system, considering long-term constraints on queue stability and computational delay of the queueing system. Due to the coexistence of two servers, the problem is highly complex and formulated as a multi-stage mixed integer non-linear programming (MINLP) problem. To solve the MINLP with reduced computational complexity, we first adopt Lyapunov optimization to transform the original multi-stage problem into deterministic problems that are manageable in each time slot. Afterward, the transformed problem is solved using an integrated learning-optimization approach, where model-free Deep Reinforcement Learning (DRL) is combined with model-based optimization. Via extensive simulation and theoretical analyses, we show that the proposed framework is guaranteed to converge and can produce nearly the same performance as the optimal solution obtained via an exhaustive search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fossick2010完成签到 ,获得积分10
7秒前
Penny完成签到,获得积分10
26秒前
30秒前
Penny发布了新的文献求助10
31秒前
andrele发布了新的文献求助50
35秒前
Fortune发布了新的文献求助10
35秒前
颜安完成签到,获得积分20
48秒前
张张完成签到 ,获得积分10
50秒前
53秒前
Fortune完成签到,获得积分10
57秒前
Vincent发布了新的文献求助10
58秒前
爆米花应助lzmcsp采纳,获得10
58秒前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
Vincent完成签到,获得积分10
1分钟前
蓝色牛马完成签到,获得积分10
1分钟前
xuzb发布了新的文献求助10
1分钟前
搜集达人应助蓝色牛马采纳,获得10
1分钟前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
lzmcsp完成签到,获得积分10
1分钟前
andrele发布了新的文献求助200
2分钟前
2分钟前
颜安发布了新的文献求助10
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
坦率的诗蕾完成签到 ,获得积分10
2分钟前
_ban完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
在水一方应助Fiy采纳,获得10
2分钟前
3分钟前
3分钟前
Fiy发布了新的文献求助10
3分钟前
wmz完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507