Deep Reinforcement Learning-Based Online Resource Management for UAV-Assisted Edge Computing With Dual Connectivity

计算机科学 移动边缘计算 强化学习 Lyapunov优化 服务器 分布式计算 最优化问题 整数规划 基站 边缘计算 排队论 资源配置 数学优化 GSM演进的增强数据速率 计算机网络 人工智能 算法 Lyapunov重新设计 李雅普诺夫指数 数学 混乱的
作者
Linh Hoang,Chuyen T. Nguyen,Anh T. Pham
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 2761-2776 被引量:8
标识
DOI:10.1109/tnet.2023.3263538
摘要

Mobile Edge Computing (MEC) is a key technology towards delay-sensitive and computation-intensive applications in future cellular networks. In this paper, we consider a multi-user, multi-server system where the cellular base station is assisted by a UAV, both of which provide additional MEC services to the terrestrial users. Via dual connectivity (DC), each user can simultaneously offload tasks to the macro base station and the UAV-mounted MEC server for parallel computing, while also processing some tasks locally. We aim to propose an online resource management framework that minimizes the average power consumption of the whole system, considering long-term constraints on queue stability and computational delay of the queueing system. Due to the coexistence of two servers, the problem is highly complex and formulated as a multi-stage mixed integer non-linear programming (MINLP) problem. To solve the MINLP with reduced computational complexity, we first adopt Lyapunov optimization to transform the original multi-stage problem into deterministic problems that are manageable in each time slot. Afterward, the transformed problem is solved using an integrated learning-optimization approach, where model-free Deep Reinforcement Learning (DRL) is combined with model-based optimization. Via extensive simulation and theoretical analyses, we show that the proposed framework is guaranteed to converge and can produce nearly the same performance as the optimal solution obtained via an exhaustive search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duhdhd发布了新的文献求助10
1秒前
黑黑嘿发布了新的文献求助10
1秒前
2秒前
kk完成签到,获得积分10
3秒前
调皮傲易完成签到 ,获得积分10
4秒前
xc完成签到,获得积分10
4秒前
乐观静蕾发布了新的文献求助10
5秒前
HEnli完成签到,获得积分20
7秒前
8秒前
8秒前
10秒前
SciGPT应助js采纳,获得10
11秒前
CodeCraft应助cza采纳,获得10
12秒前
12秒前
tdtk发布了新的文献求助10
14秒前
海之关注了科研通微信公众号
16秒前
Focus_BG发布了新的文献求助10
17秒前
李爱国应助云澈采纳,获得10
18秒前
cza完成签到,获得积分20
19秒前
Yohna完成签到 ,获得积分10
20秒前
刘羿完成签到,获得积分10
21秒前
慕青应助李李05采纳,获得10
21秒前
21秒前
21秒前
21秒前
萧水白发布了新的文献求助10
22秒前
23秒前
积极的曼彤完成签到,获得积分10
25秒前
宁过儿发布了新的文献求助10
25秒前
25秒前
27秒前
背后竺发布了新的文献求助10
28秒前
tdtk发布了新的文献求助10
28秒前
云澈发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
沐雨汐完成签到,获得积分10
31秒前
32秒前
高挑的牛青完成签到,获得积分10
32秒前
kk发布了新的文献求助10
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953205
求助须知:如何正确求助?哪些是违规求助? 3498532
关于积分的说明 11092425
捐赠科研通 3229120
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415