Deep Reinforcement Learning-Based Online Resource Management for UAV-Assisted Edge Computing With Dual Connectivity

计算机科学 移动边缘计算 强化学习 Lyapunov优化 服务器 分布式计算 最优化问题 整数规划 基站 边缘计算 排队论 资源配置 数学优化 GSM演进的增强数据速率 计算机网络 人工智能 算法 Lyapunov重新设计 数学 李雅普诺夫指数 混乱的
作者
Linh Hoang,Chuyen T. Nguyen,Anh T. Pham
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 2761-2776 被引量:8
标识
DOI:10.1109/tnet.2023.3263538
摘要

Mobile Edge Computing (MEC) is a key technology towards delay-sensitive and computation-intensive applications in future cellular networks. In this paper, we consider a multi-user, multi-server system where the cellular base station is assisted by a UAV, both of which provide additional MEC services to the terrestrial users. Via dual connectivity (DC), each user can simultaneously offload tasks to the macro base station and the UAV-mounted MEC server for parallel computing, while also processing some tasks locally. We aim to propose an online resource management framework that minimizes the average power consumption of the whole system, considering long-term constraints on queue stability and computational delay of the queueing system. Due to the coexistence of two servers, the problem is highly complex and formulated as a multi-stage mixed integer non-linear programming (MINLP) problem. To solve the MINLP with reduced computational complexity, we first adopt Lyapunov optimization to transform the original multi-stage problem into deterministic problems that are manageable in each time slot. Afterward, the transformed problem is solved using an integrated learning-optimization approach, where model-free Deep Reinforcement Learning (DRL) is combined with model-based optimization. Via extensive simulation and theoretical analyses, we show that the proposed framework is guaranteed to converge and can produce nearly the same performance as the optimal solution obtained via an exhaustive search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Whahahaha完成签到,获得积分10
1秒前
AURORA完成签到 ,获得积分10
3秒前
shmily发布了新的文献求助10
3秒前
嘎嘎嘎发布了新的文献求助10
4秒前
4秒前
黄晓梅发布了新的文献求助10
4秒前
酷酷亦寒完成签到 ,获得积分10
4秒前
4秒前
充电宝应助lululala采纳,获得10
6秒前
大个应助11采纳,获得50
7秒前
善学以致用应助杨朝进采纳,获得10
7秒前
kbcbwb2002完成签到,获得积分10
7秒前
威猛先生发布了新的文献求助30
7秒前
深情安青应助安详猕猴桃采纳,获得10
8秒前
9秒前
10秒前
Hello应助齐平露采纳,获得10
10秒前
不爱吃韭菜完成签到 ,获得积分10
11秒前
田田圈发布了新的文献求助10
11秒前
12秒前
华仔应助威武荔枝采纳,获得30
12秒前
13秒前
huangsi完成签到,获得积分10
13秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
nice1025完成签到,获得积分10
16秒前
16秒前
17秒前
威猛先生完成签到,获得积分10
17秒前
17秒前
研友_LkD29n完成签到 ,获得积分10
17秒前
18秒前
linglingling完成签到 ,获得积分10
18秒前
miracle发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
hnlgdx发布了新的文献求助20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414850
求助须知:如何正确求助?哪些是违规求助? 4531628
关于积分的说明 14129612
捐赠科研通 4447113
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431660
关于科研通互助平台的介绍 1409301