材料科学
石墨烯
生物相容性
纳米技术
脚手架
细胞分化
导电体
生物医学工程
复合材料
化学
生物化学
医学
基因
冶金
作者
Qian Gong,Jing Hong,Ming Ren,Zongjie Shen,Siqi Zhu,Ying Hao,Zhanchi Zhu,Li Li,Lixing Kang,Jiangtao Di,Guosheng Cheng,Qingwen Li
标识
DOI:10.1002/adem.202300237
摘要
Nowadays, the use of topographical features and electrical conductivity of scaffolds at the cell‐substrate interface for effectively regulating cell growth and differentiation have gained increasing attention due to great demands for tissue engineering. Herein, a facile approach to the growth of highly disordered graphene nanosheets (HDGNs) is demonstrated on a cheap and weaving quartz‐braided structure as a functionalized scaffold for the differentiation of nerve cells. The patterned aligned structure can effectively integrate the advantages of a conductive graphene‐functional interface (favorable for cell attachment and growth), topologically woven surface structure, providing a flexible and multifunctional regulatory platform for nerve cell growth. Compared with monocrystal polycrystalline graphene, amorphous graphene has high biocompatibility due to sufficient active sites, and has high conductivity to the composite nonconductive substrate, which can realize electrical stimulation (ES) of cell differentiation. Herein, the HDGN/quartz fabric with high biocompatibility (the cell viability is 98%), and great electrical conductivity, is proved. Then, the applied ES coupled with HDGN/quartz fabric significantly enhances selective neuronal differentiation into neurons (the differentiation growth rate is 131%). Collectively, herein, a new material basis is provided for electric induction of cell growth and differentiation, providing more possibilities for the development of intelligent biological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI