A hybrid approach to predict battery health combined with attention-based transformer and online correction

变压器 健康状况 计算机科学 颗粒过滤器 非线性系统 均方误差 电池(电) 可靠性工程 工程类 人工智能 电压 电气工程 卡尔曼滤波器 数学 统计 功率(物理) 物理 量子力学
作者
Ruilong Xu,Yujie Wang,Zonghai Chen
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:65: 107365-107365 被引量:19
标识
DOI:10.1016/j.est.2023.107365
摘要

The lithium-ion battery is an important part of green energy systems, and battery aging will lead to the degraded performance of energy storage systems (ESSs). Therefore, accurate battery health prediction is crucial to guarantee the safe and efficient operation of ESSs. This paper proposes a hybrid battery health prediction method that fuses Transformer and online correction. First, the attention-based Transformer is taken as a global model to establish the nonlinear relationship between measured data and battery capacity decline. Second, a local model based on unscented particle filter is developed for the online correction of Transformer outputs. To characterize battery degradation behavior as much as possible, multi-scale health features are considered, including time-series and statistical features extracted from partial charging curves and operating data distributions, respectively. Then, feature dimension reduction is performed based on the maximum information coefficient method. To handle both types of features, a special filter layer is carefully designed in Transformer. Compared with the state-of-the-art algorithms, the proposed method achieves optimal health prediction performance with minimal computational resources for batteries with different aging conditions. When only 20% of the cell data is used for training, the predicted root mean square error can still be guaranteed to be within 0.72%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wterry26发布了新的文献求助10
2秒前
彭于晏应助学术渣渣采纳,获得30
2秒前
刘佳琦19947完成签到,获得积分10
3秒前
Bio应助烂漫的静枫采纳,获得60
3秒前
恋雅颖月应助congenialboy采纳,获得10
3秒前
Xylah_Rebecca发布了新的文献求助10
4秒前
苏苏发布了新的文献求助10
7秒前
wterry26完成签到,获得积分10
9秒前
派大星完成签到,获得积分10
10秒前
冷笑完成签到,获得积分10
10秒前
11秒前
rynchee完成签到 ,获得积分0
11秒前
烂漫的静枫完成签到,获得积分10
12秒前
顾矜应助lzx采纳,获得10
12秒前
想人陪的烤鸡完成签到,获得积分20
13秒前
14秒前
传奇3应助山城小肘子采纳,获得10
14秒前
敏感初露发布了新的文献求助10
15秒前
Muhammad发布了新的文献求助10
15秒前
Mickeywu发布了新的文献求助20
17秒前
17秒前
18秒前
今后应助敏感初露采纳,获得10
19秒前
动听的易巧完成签到,获得积分10
20秒前
Jiang_wencai发布了新的文献求助10
21秒前
Nora完成签到 ,获得积分10
22秒前
精明怜南发布了新的文献求助10
22秒前
小二郎应助柠檬小丸子采纳,获得10
22秒前
天天快乐应助Xylah_Rebecca采纳,获得10
24秒前
MHM发布了新的文献求助10
25秒前
mangmang发布了新的文献求助10
25秒前
懵懂的幻桃完成签到 ,获得积分10
26秒前
27秒前
29秒前
22发布了新的文献求助10
30秒前
Owen应助陈曦采纳,获得10
30秒前
温暖静柏发布了新的文献求助20
30秒前
乌禅发布了新的文献求助10
31秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176