A hybrid approach to predict battery health combined with attention-based transformer and online correction

变压器 健康状况 计算机科学 颗粒过滤器 非线性系统 均方误差 电池(电) 可靠性工程 工程类 人工智能 电压 电气工程 卡尔曼滤波器 数学 统计 功率(物理) 物理 量子力学
作者
Ruilong Xu,Yujie Wang,Zonghai Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:65: 107365-107365 被引量:19
标识
DOI:10.1016/j.est.2023.107365
摘要

The lithium-ion battery is an important part of green energy systems, and battery aging will lead to the degraded performance of energy storage systems (ESSs). Therefore, accurate battery health prediction is crucial to guarantee the safe and efficient operation of ESSs. This paper proposes a hybrid battery health prediction method that fuses Transformer and online correction. First, the attention-based Transformer is taken as a global model to establish the nonlinear relationship between measured data and battery capacity decline. Second, a local model based on unscented particle filter is developed for the online correction of Transformer outputs. To characterize battery degradation behavior as much as possible, multi-scale health features are considered, including time-series and statistical features extracted from partial charging curves and operating data distributions, respectively. Then, feature dimension reduction is performed based on the maximum information coefficient method. To handle both types of features, a special filter layer is carefully designed in Transformer. Compared with the state-of-the-art algorithms, the proposed method achieves optimal health prediction performance with minimal computational resources for batteries with different aging conditions. When only 20% of the cell data is used for training, the predicted root mean square error can still be guaranteed to be within 0.72%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助22采纳,获得10
刚刚
赘婿应助TT采纳,获得10
1秒前
1秒前
1秒前
2秒前
Jenny应助赖道之采纳,获得10
4秒前
依古比古完成签到 ,获得积分10
6秒前
汎影发布了新的文献求助10
6秒前
小二完成签到,获得积分10
6秒前
7秒前
9秒前
顾矜应助长情洙采纳,获得10
9秒前
monere发布了新的文献求助30
9秒前
Xiaoxiao应助汉关采纳,获得10
11秒前
11秒前
汎影完成签到,获得积分10
12秒前
13秒前
Chen发布了新的文献求助10
15秒前
WW完成签到,获得积分10
15秒前
17秒前
hyjcnhyj完成签到,获得积分10
18秒前
英姑应助赖道之采纳,获得10
19秒前
21秒前
研友_LXdbaL发布了新的文献求助30
21秒前
思源应助单薄新烟采纳,获得10
22秒前
22秒前
23秒前
Zz完成签到,获得积分10
23秒前
Prandtl完成签到 ,获得积分10
25秒前
26秒前
zfzf0422完成签到 ,获得积分10
27秒前
上官若男应助jackie采纳,获得10
27秒前
27秒前
我是站长才怪应助Benliu采纳,获得20
28秒前
28秒前
zh20130完成签到,获得积分10
28秒前
28秒前
TT发布了新的文献求助10
29秒前
Star1983发布了新的文献求助10
29秒前
研友_LXdbaL完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808