A multi-objective stochastic programming approach with untrusted suppliers for green supply chain design by uncertain demand, shortage, and transportation costs

生产(经济) 供应链 缩小 环境经济学 随机规划 盈利能力指数 启发式 环境污染 计算机科学 风险分析(工程) 运筹学 业务 经济 环境科学 工程类 数学优化 微观经济学 数学 环境保护 人工智能 营销 程序设计语言 财务
作者
Maryam Moayedi,Ramin Banan Sadeghian
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:408: 137007-137007 被引量:10
标识
DOI:10.1016/j.jclepro.2023.137007
摘要

In recent decades, people are paying more attention to protecting the environment and biological resources. One of the most important issues of environmental pollution is air pollution, with production and transportation contributing a significant number of emissions. Considering the various warnings about the excessive increase in the amount of carbon dioxide on the planet, it is necessary to investigate the solutions to reduce the emission of carbon dioxide. On the other hand, in the production cycle, providing more comprehensive models and finding more optimal designs will play a significant role in reducing energy consumption and increasing profitability. Models with the most uncertain parameters are more practical and closer to the real world. In this paper, we consider a multi-objective stochastic programming approach for green supply chain design under uncertainty. Demands, supplies, processing, transportation, shortage, and capacity expansion costs are all considered uncertain parameters. At the same time, environmental approaches to reduce air pollution, (specifically reducing carbon dioxide emissions), are presented. Our multi-objective model includes the minimization of the sum of the total cost, the minimization of the variance of the total cost, the minimization of the financial risk or the probability of not meeting a certain budget, and the minimization of the amount of pollution consequent of production and transportation machines. In the following case study, a three-tier supply chain with four suppliers, four production centers, and three product distribution centers with uncertain demand, suppliers, processing, transportation, cost shortages, and capacity development are examined. To solve the model, two meta-heuristic algorithms (multi-objective genetics with faulty sorting and particle swarming) have been developed. The computational results and optimal designs of the supply set were obtained after the implementation of the algorithms, and finally, by performing Sensitivity Analysis and statistical tests, showed that there are two algorithms with good performance and in most cases, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is superior to the Multi-Objective Particle Swarm Optimization (MOPSO).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
YE完成签到,获得积分10
刚刚
刚刚
1秒前
龙俊利完成签到,获得积分10
1秒前
桐桐应助球球采纳,获得10
2秒前
2秒前
脑洞疼应助Ting采纳,获得10
2秒前
hanhan完成签到,获得积分10
6秒前
7秒前
南桑发布了新的文献求助10
7秒前
LL发布了新的文献求助10
8秒前
9秒前
今后应助courage采纳,获得10
9秒前
隐形曼青应助叶远望采纳,获得10
10秒前
斯文败类应助Ting采纳,获得10
11秒前
11秒前
sine完成签到,获得积分10
12秒前
12秒前
13秒前
一颗咸蛋黄完成签到 ,获得积分10
13秒前
13秒前
万能图书馆应助阔达宝莹采纳,获得10
14秒前
传奇3应助冰冰采纳,获得10
15秒前
学术蝗虫发布了新的文献求助10
15秒前
sxh发布了新的文献求助10
17秒前
17秒前
852应助笑傲江湖采纳,获得20
17秒前
17秒前
18秒前
Ting发布了新的文献求助10
18秒前
英姑应助山风采纳,获得10
18秒前
caiweihong完成签到 ,获得积分10
18秒前
Decade2021完成签到 ,获得积分10
20秒前
miemie发布了新的文献求助30
22秒前
22秒前
22秒前
倘若回到最初给殷勤的紫槐的求助进行了留言
22秒前
23秒前
24秒前
Hello应助xue采纳,获得10
24秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499624
求助须知:如何正确求助?哪些是违规求助? 4596396
关于积分的说明 14454419
捐赠科研通 4529576
什么是DOI,文献DOI怎么找? 2482089
邀请新用户注册赠送积分活动 1466061
关于科研通互助平台的介绍 1438891