A multi-objective stochastic programming approach with untrusted suppliers for green supply chain design by uncertain demand, shortage, and transportation costs

生产(经济) 供应链 缩小 环境经济学 随机规划 盈利能力指数 启发式 环境污染 计算机科学 风险分析(工程) 运筹学 业务 经济 环境科学 工程类 数学优化 微观经济学 数学 环境保护 营销 财务 人工智能 程序设计语言
作者
Maryam Moayedi,Ramin Banan Sadeghian
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:408: 137007-137007 被引量:10
标识
DOI:10.1016/j.jclepro.2023.137007
摘要

In recent decades, people are paying more attention to protecting the environment and biological resources. One of the most important issues of environmental pollution is air pollution, with production and transportation contributing a significant number of emissions. Considering the various warnings about the excessive increase in the amount of carbon dioxide on the planet, it is necessary to investigate the solutions to reduce the emission of carbon dioxide. On the other hand, in the production cycle, providing more comprehensive models and finding more optimal designs will play a significant role in reducing energy consumption and increasing profitability. Models with the most uncertain parameters are more practical and closer to the real world. In this paper, we consider a multi-objective stochastic programming approach for green supply chain design under uncertainty. Demands, supplies, processing, transportation, shortage, and capacity expansion costs are all considered uncertain parameters. At the same time, environmental approaches to reduce air pollution, (specifically reducing carbon dioxide emissions), are presented. Our multi-objective model includes the minimization of the sum of the total cost, the minimization of the variance of the total cost, the minimization of the financial risk or the probability of not meeting a certain budget, and the minimization of the amount of pollution consequent of production and transportation machines. In the following case study, a three-tier supply chain with four suppliers, four production centers, and three product distribution centers with uncertain demand, suppliers, processing, transportation, cost shortages, and capacity development are examined. To solve the model, two meta-heuristic algorithms (multi-objective genetics with faulty sorting and particle swarming) have been developed. The computational results and optimal designs of the supply set were obtained after the implementation of the algorithms, and finally, by performing Sensitivity Analysis and statistical tests, showed that there are two algorithms with good performance and in most cases, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is superior to the Multi-Objective Particle Swarm Optimization (MOPSO).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的如霜完成签到,获得积分10
1秒前
1秒前
Nanyi发布了新的文献求助10
1秒前
orixero应助旭日采纳,获得10
1秒前
1秒前
2秒前
大模型应助bji采纳,获得10
2秒前
Ava应助木子李采纳,获得10
3秒前
yookia应助彼时光影采纳,获得10
3秒前
Akim应助gfr123采纳,获得10
3秒前
kopp发布了新的文献求助10
3秒前
wrahb发布了新的文献求助10
3秒前
儒雅的幻然完成签到,获得积分10
3秒前
123321完成签到,获得积分10
4秒前
充电宝应助陈图图采纳,获得10
4秒前
汉堡包应助清爽的雨竹采纳,获得10
4秒前
申申完成签到,获得积分10
4秒前
LKL林完成签到,获得积分10
4秒前
彭于晏发布了新的文献求助10
5秒前
LBY发布了新的文献求助10
5秒前
5秒前
长夜变清早完成签到,获得积分10
5秒前
NexusExplorer应助胡萝卜糊了采纳,获得10
6秒前
7秒前
8秒前
一三五七九完成签到,获得积分10
8秒前
Thor发布了新的文献求助10
8秒前
8秒前
8秒前
LY完成签到 ,获得积分10
8秒前
KevinL完成签到,获得积分10
9秒前
英姑应助ittt采纳,获得30
10秒前
SciGPT应助无奈的老姆采纳,获得10
10秒前
西梅完成签到,获得积分10
10秒前
Ava应助jiafang采纳,获得10
10秒前
Nelson_Foo完成签到,获得积分10
10秒前
11秒前
Gem发布了新的文献求助10
11秒前
Zixuan完成签到,获得积分10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154