A multi-objective stochastic programming approach with untrusted suppliers for green supply chain design by uncertain demand, shortage, and transportation costs

生产(经济) 供应链 缩小 环境经济学 随机规划 盈利能力指数 启发式 环境污染 计算机科学 风险分析(工程) 运筹学 业务 经济 环境科学 工程类 数学优化 微观经济学 数学 环境保护 营销 财务 人工智能 程序设计语言
作者
Maryam Moayedi,Ramin Banan Sadeghian
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:408: 137007-137007 被引量:10
标识
DOI:10.1016/j.jclepro.2023.137007
摘要

In recent decades, people are paying more attention to protecting the environment and biological resources. One of the most important issues of environmental pollution is air pollution, with production and transportation contributing a significant number of emissions. Considering the various warnings about the excessive increase in the amount of carbon dioxide on the planet, it is necessary to investigate the solutions to reduce the emission of carbon dioxide. On the other hand, in the production cycle, providing more comprehensive models and finding more optimal designs will play a significant role in reducing energy consumption and increasing profitability. Models with the most uncertain parameters are more practical and closer to the real world. In this paper, we consider a multi-objective stochastic programming approach for green supply chain design under uncertainty. Demands, supplies, processing, transportation, shortage, and capacity expansion costs are all considered uncertain parameters. At the same time, environmental approaches to reduce air pollution, (specifically reducing carbon dioxide emissions), are presented. Our multi-objective model includes the minimization of the sum of the total cost, the minimization of the variance of the total cost, the minimization of the financial risk or the probability of not meeting a certain budget, and the minimization of the amount of pollution consequent of production and transportation machines. In the following case study, a three-tier supply chain with four suppliers, four production centers, and three product distribution centers with uncertain demand, suppliers, processing, transportation, cost shortages, and capacity development are examined. To solve the model, two meta-heuristic algorithms (multi-objective genetics with faulty sorting and particle swarming) have been developed. The computational results and optimal designs of the supply set were obtained after the implementation of the algorithms, and finally, by performing Sensitivity Analysis and statistical tests, showed that there are two algorithms with good performance and in most cases, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is superior to the Multi-Objective Particle Swarm Optimization (MOPSO).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
彳亍1117应助科研通管家采纳,获得10
1秒前
小兰应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得20
2秒前
小墨应助科研通管家采纳,获得10
2秒前
2秒前
chriselva应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助万安安采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
chriselva应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得20
2秒前
3秒前
chriselva应助科研通管家采纳,获得10
3秒前
窦某发布了新的文献求助10
3秒前
小星星应助科研通管家采纳,获得10
3秒前
彳亍1117应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
爆米花应助辑坤大王采纳,获得10
3秒前
12333发布了新的文献求助10
3秒前
寻枫发布了新的文献求助20
4秒前
dreamboat完成签到,获得积分10
4秒前
方班术发布了新的文献求助10
5秒前
英姑应助勤奋的冰枫采纳,获得10
5秒前
研友_Z34DG8完成签到,获得积分10
6秒前
6秒前
哇咔咔完成签到 ,获得积分10
6秒前
生生不息完成签到,获得积分20
6秒前
Ava应助Ann采纳,获得10
6秒前
6秒前
天真炎彬完成签到,获得积分10
7秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760