Deep learning enables nonlinear Lamb waves for precise location of fatigue crack

兰姆波 非线性系统 超声波传感器 声学 计算机科学 结构健康监测 信号(编程语言) 谐波 结构工程 工程类 电信 物理 表面波 量子力学 程序设计语言
作者
Haiming Xu,Lishuai Liu,Jichao Xu,Yanxun Xiang,Fu‐Zhen Xuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (1): 77-93 被引量:10
标识
DOI:10.1177/14759217231167076
摘要

Localization of fatigue cracks imposes immense significance to ensure the health of the engineering structures and prevent further catastrophic accidents. The nonlinear ultrasonic waves, especially the nonlinear Lamb waves, have been increasingly studied and employed for identifying micro-damages that are usually invisible to traditional linear ultrasonic waves. However, it remains a challenge to locate the fatigue cracks using nonlinear Lamb waves owing to the enormous difficulties in decoding location information from acoustic nonlinearity. Motivated by this, this work presents a data-driven method for precise location of fatigue crack using nonlinear Lamb waves. A 1D-Attention-convolutional neural network is developed to correlate the fatigue crack location with the wavelet coefficients at the second harmonic frequency of Lamb wave signals. The introduction of the Attention layer enables the models to pay more attention to the desired nonlinear features which dominates locating the fatigue crack. In particular, a convenient dataset creation scheme guided by the relative value label is proposed to generate sufficient data commonly required for deep learning approach. In addition, a lightweight single-excite-multiple-receive signal acquisition method is adopted instead of full-matrix capture method used in the traditional research, which highly improves detection efficiency. Numerical simulation and experimental validation manifest that the trained network can be used to establish the complex mapping between the nonlinear ultrasonic signals and the fatigue crack location features, so as to locate barely visible fatigue cracks. Our work provides a promising and practical way to facilitate nonlinear Lamb waves to accurately locate fatigue cracks in large-scale plate-like structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grace完成签到,获得积分10
1秒前
大个应助相识采纳,获得10
1秒前
2秒前
小马甲应助略略略采纳,获得10
2秒前
3秒前
everyone_woo完成签到,获得积分10
6秒前
7秒前
69完成签到,获得积分10
7秒前
Jasper应助徐慕源采纳,获得30
7秒前
funnyzpc完成签到,获得积分10
8秒前
小易发布了新的文献求助10
10秒前
11秒前
陈小小完成签到,获得积分10
11秒前
12秒前
orixero应助funnyzpc采纳,获得10
12秒前
13秒前
13秒前
生动的战斗机完成签到,获得积分10
15秒前
略略略发布了新的文献求助10
16秒前
夏日天空完成签到,获得积分10
16秒前
火星上的问儿完成签到,获得积分10
16秒前
开心最重要完成签到,获得积分10
17秒前
微笑驳发布了新的文献求助10
17秒前
18秒前
厮人野完成签到,获得积分10
18秒前
嘉心糖应助NN采纳,获得30
18秒前
天才完成签到,获得积分20
19秒前
务实的苠完成签到 ,获得积分10
20秒前
20秒前
21秒前
dicryn2发布了新的文献求助20
23秒前
周周发布了新的文献求助10
24秒前
科研通AI2S应助白宫采纳,获得10
24秒前
26秒前
坦克班班长发布了新的文献求助200
27秒前
27秒前
迷路以蓝完成签到,获得积分10
28秒前
ONLY完成签到,获得积分10
29秒前
30秒前
典雅碧空发布了新的文献求助10
32秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415